
ReportLab PDF Library

User Guide

ReportLab Version 2.0

165 The Broadway
Wimbledon
London SW19 1NE
United Kingdom

Chapter 1 Introduction

1.1 About this document
This document is an introduction to the ReportLab PDF library. Some previous programming experience is
presumed and familiarity with the Python Programming language is recommended. If you are new to Python,
we tell you in the next section where to go for orientation.

This manual does not cover 100% of the features, but should explain all the main concepts and help you get
started, and point you at other learning resources. After working your way through this, you should be ready
to begin writing programs to produce sophisticated reports.

In this chapter, we will cover the groundwork:
• What is ReportLab all about, and why should I use it?
• What is Python?
• How do I get everything set up and running?

We need your help to make sure this manual is complete and helpful. Please send any feedback to our user
mailing list, which is signposted from www.reportlab.org.

1.2 What is the ReportLab PDF Library?
This is a software library that lets you directly create documents in Adobe's Portable Document Format
(PDF) using the Python programming language. It also creates charts and data graphics in various bitmap and
vector formats as well as PDF.

PDF is the global standard for electronic documents. It supports high-quality printing yet is totally portable
across platforms, thanks to the freely available Acrobat Reader. Any application which previously generated
hard copy reports or driving a printer can benefit from making PDF documents instead; these can be
archived, emailed, placed on the web, or printed out the old-fashioned way. However, the PDF file format is
a complex indexed binary format which is impossible to type directly. The PDF format specification is more
than 600 pages long and PDF files must provide precise byte offsets -- a single extra character placed
anywhere in a valid PDF document can render it invalid. This makes it harder to generate than HTML.

Most of the world's PDF documents have been produced by Adobe's Acrobat tools, or rivals such as JAWS
PDF Creator, which act as 'print drivers'. Anyone wanting to automate PDF production would typically use a
product like Quark, Word or Framemaker running in a loop with macros or plugins, connected to Acrobat.
Pipelines of several languages and products can be slow and somewhat unwieldy.

The ReportLab library directly creates PDF based on your graphics commands. There are no intervening
steps. Your applications can generate reports extremely fast - sometimes orders of magnitude faster than
traditional report-writing tools. This approach is shared by several other libraries - PDFlib for C, iText for
Java, iTextSharp for .NET and others. However, The ReportLab library differs in that it can work at much
higher levels, with a full featured engine for laying out documents complete with tables and charts.

In addition, because you are writing a program in a powerful general purpose language, there are no
restrictions at all on where you get your data from, how you transform it, and the kind of output you can
create. And you can reuse code across whole families of reports.

The ReportLab library is expected to be useful in at least the following contexts:
• Dynamic PDF generation on the web
• High-volume corporate reporting and database publishing
• An embeddable print engine for other applications, including a 'report language' so that users

can customize their own reports. This is particularly relevant to cross-platform apps which
cannot rely on a consistent printing or previewing API on each operating system.

• A 'build system' for complex documents with charts, tables and text such as management
accounts, statistical reports and scientific papers

• Going from XML to PDF in one step!

User Guide Chapter 1 Introduction

Page 2

1.3 What is Python?
Python is an interpreted, interactive, object-oriented programming language. It is often compared to Tcl,
Perl, Scheme or Java.

Python combines remarkable power with very clear syntax. It has modules, classes, exceptions, very high
level dynamic data types, and dynamic typing. There are interfaces to many system calls and libraries, as
well as to various windowing systems (X11, Motif, Tk, Mac, MFC). New built-in modules are easily written
in C or C++. Python is also usable as an extension language for applications that need a programmable
interface.

Python is as old as Java and has been growing steadily in popularity for 13 years; since our library first came
out it has entered the mainstream. Many ReportLab library users are already Python devotees, but if you are
not, we feel that the language is an excellent choice for document-generation apps because of its
expressiveness and ability to get data from anywhere.

Python is copyrighted but freely usable and distributable, even for commercial use.

1.4 Acknowledgements
Many people have contributed to ReportLab. We would like to thank in particular (in approximately
chronological order) Chris Lee, Magnus Lie Hetland, Robert Kern, Jeff Bauer (who contributed
normalDate.py); Jerome Alet (numerous patches and the rlzope demo), Andre Reitz, Max M, Albertas
Agejevas, T Blatter, Ron Peleg, Gary Poster, Steve Halasz, Andrew Mercer, Paul McNett, Chad Miller, Tim
Roberts, Jorge Godoy and Benn B.

Special thanks go to Just van Rossum for his valuable assistance with font technicalities and the
LettErrorRobot-Chrome type 1 font.

Marius Gedminas deserves a big hand for contributing the work on TrueType fonts and we are glad to
include these in the toolkit. Finally we thank Bigelow & Holmes Inc
(design@bigelowandholmes.com) for Luxi Serif Regular and Ray Larabie
(http://www.larabiefonts.com) for the Rina TrueType font.

1.5 Installation and Setup
Below we provide an abbreviated setup procedure for Python experts and a more verbose procedure for
people who are new to Python.

Installation for experts

First of all, we'll give you the high-speed version for experienced Python developers:
1. Install Python 2.3 or later (2.4 recommended). ReportLab 2.x uses Python 2.3 features and will

use 2.4 going forwards. We also maintain a 1.x branch which works back to Python 2.1.
2. If you want to produce compressed PDF files (recommended), check that zlib is installed.
3. If you want to work with bitmap images, install and test the Python Imaging Library
4. Unpack the reportlab package (reportlab.zip or reportlab.tgz) into a directory on your path.

(You can also use python setup.py install if you wish)
5. Unpack the rl_addons package and build the C extensions with distutils; or grab the

corresponding .pyd files from our download page.
6. cd to reportlab/test and execute runAll.py. This will create many PDF files.
7. You may also want to download and run the rl_check.py on our site, which health-checks

an installation and reports on any missing options.

If you have any problems, check the 'Detailed Instructions' section below.

User Guide Chapter 1 Introduction

Page 3

A note on available versions

The reportlab library can be found at ftp.reportlab.com in the top-level directory or at
http://www.reportlab.com/ftp/. Each successive version is stored in both zip and tgz format, but the contents
are identical apart from line endings. Versions are numbered: ReportLab_1_00.zip,
ReportLab_1_01.zip and so on. The latest stable version is also available as just reportlab.zip
(or reportlab.tgz), which is actually a symbolic link to the latest numbered version. Finally, daily
snapshots off the trunk are available as current.zip (or current.tgz).

Instructions for novices: Windows

This section assumes you don't know much about Python. We cover all of the steps for three common
platforms, including how to verify that each one is complete. While this may seem like a long list, everything
takes 5 minutes if you have the binaries at hand.

1. Get and install Python from http://www.python.org/. Reportlab 2.x works with
Python 2.3 upwards but we strongly recommend to use the latest stable version of Python (2.4.3
at the time of writing). Follow the links to 'Download' and get the latest official version. This
will install itself into C:\Python24 After installing, you should be able to run the 'Python
(command line)' option from the Start Menu.

2. If on Windows, we strongly recommend installing the Python Windows Extensions, which let
you use access all the Windows data sources, and provide a very nice IDE. This can be found at
http://sourceforge.net/projects/pywin32/. Once this is installed, you can start
Pythonwin from the Start Menu and get a GUI application.

3. The next step is optional and only necessary if you want to include images in your reports; it
can also be carried out later. However we always recommend a full installation if time permits.

4. Install the Python Imaging Library (PIL) from
http://www.pythonware.com/products/pil/.

5. Now you are ready to install reportlab itself. Unzip the archive straight into your Python
directory; it creates a subdirectory named reportlab. You should now be able to go to a
Python command line interpreter and type import reportlab without getting an error
message.

6. Download the zip file of precompiled DLLs for your Python version from the bottom of the
http://www.reportlab.org/downloads.html downloads page, and unzip them
into C:\Python24\lib\site-packages (or its equivalent for other Python versions

7. Open up a MS-DOS command prompt and CD to "..\reportlab\test". Enter
"runAll.py". You should see lots of dots and no error messages. This will also create many
PDF files and generate the manuals in reportlab/docs (including this one).

8. Finally, we recommend you download and run the script rl_check.py from
http://www.reportlab.org/ftp/^. This will health-check all the above steps and warn you if
anything is missing or mismatched.

Instructions for Python novices: Unix

1. On a large number of Unix and Linux distributions, Python is already installed, or is avaialable
as a standard package you can install with the relevant package manager.

2. If you want to compile from source download the latest sources from http://www.python.org
(currently the latest source is in http://www.python.org/ftp/python/2.4.3/Python-2.4.3.tgz). If
you wish to use binaries get the latest RPM or DEB or whatever package and install (or get
your super user (system administrator) to do the work).

3. If you are building Python yourself, unpack the sources into a temporary directory using a tar
command e.g. tar xzvf Python-2.4.3.tgz; this will create a subdirectory called
Python-2.4.3 (or whatever). cd into this directory. Then read the file README! It contains the
latest information on how to install Python.

4. If your system has the gzip libz library installed check that the zlib extension will be installed
by default by editing the file Modules/Setup.in and ensuring that (near line 405) the line
containing zlib zlibmodule.c is uncommented i.e. has no hash '#' character at the beginning.
You also need to decide if you will be installing in the default location (/usr/local/) or in some
other place. The zlib module is needed if you want compressed PDF and for some images.

User Guide Chapter 1 Introduction

Page 4

5. Invoke the command ./configure --prefix=/usr/local this should configure the
source directory for building. Then you can build the binaries with a make command. If your
make command is not up to it try building with make MAKE=make. If all goes well install
with make install.

6. If all has gone well and python is in the execution search path you should now be able to type
python and see a Python prompt.

7. Once you can do that it's time to try and install ReportLab. First get the latest reportlab.tgz. If
ReportLab is to be available to all then the reportlab archive should be unpacked in the
lib/site-python directory (typically /usr/local/lib/site-python) if necessary by a superuser.
Otherwise unpack in a directory of your choice and arrange for that directory to be on your
PYTHONPATH variable.

#put something like this in your
#shell rcfile
PYTHONPATH=$HOME/mypythonpackages
export PYTHONPATH

You should now be able to run python and execute the python statement

import reportlab

8. If you want to use images you should certainly consider getting & installing the Python Imaging
Library - follow the directions from
http://www.python.org/sigs/image-sig/index.html or get it directly from
http://www.pythonware.com/products/pil/.

Instructions for Python novices: Mac

This is much, much easier with Mac OS X since Python (usually 2.3) is installed on your system as standard.
Just follow the instructions for installing the ReportLab archive above.

Instructions for Jython (Java implementation of Python) users

A port to Java was done in 2004. This involved some changes to the framework and creating Java equivalents
of the C extensions. At the end of this work the entire output of the test suite produced byte-for-byte identical
output. However, we have not been testng against Jython since, because (a) as far as we know no one used it,
and (b) Jython has not kept up with Python features which we need to use. We suggest you use ReportLab
v1.19 or v1.20 which were Python-2.1 compatible. We'd welcome test reports and/or a volunteer to refresh
things now that Jython is progressing.

The Jython version was tested under Sun's J2SDK 1.3.1. It is known that under J2SDK 1.4.0_01
test_pdfbase_ttfonts.py fails horribly with an outOfMemory exception, probably caused by a JVM
bug.

1. Before installing Jython, make sure you have a supported version of Java Virtual Machine
installed. For the list of supported JVM's see
http://www.jython.org/platform.html

2. To install Jython, download the setup package from www.jython.org and follow
installation instructions.

3. To set ReportLab toolkit under Jython PATH, edit JYTHON_HOME/registry file and
include line that tells Jython where to look for packages. To include ReportLab toolkit under
Jython PATH, directory that contains Reportlab should be included:
python.path=REPORTLAB_HOME_PARENT_DIR For example, if your Reportlab toolkit
is installed under C:\code\reportlab the path line should be:
python.path=C:\\code (note two backslashes!)

Instructions for IronPython (Python for .NET) users

We haven't tackled this yet officially, but IronPython can apparently run much of our code. We do need to go
through the same exercises we did for Jython - finding the .NET equivalents of _rl_accel, pyRXP,
_renderPM and PIL - to get 100% managed code. Hopefully this will happen soon and we'd be delighted to

User Guide Chapter 1 Introduction

Page 5

work with anyone on this.

1.6 Getting Involved
ReportLab is an Open Source project. Although we are a commercial company we provide the core PDF
generation sources freely, even for commercial purposes, and we make no income directly from these
modules. We also welcome help from the community as much as any other Open Source project. There are
many ways in which you can help:

• General feedback on the core API. Does it work for you? Are there any rough edges? Does
anything feel clunky and awkward?

• New objects to put in reports, or useful utilities for the library. We have an open standard for
report objects, so if you have written a nice chart or table class, why not contribute it?

• Demonstrations and Case Studies: If you have produced some nice output, send it to us (with or
without scripts). If ReportLab solved a problem for you at work, write a little 'case study' and
send it in. And if your web site uses our tools to make reports, let us link to it. We will be happy
to display your work (and credit it with your name and company) on our site!

• Working on the core code: we have a long list of things to refine or to implement. If you are
missing some features or just want to help out, let us know!

The first step for anyone wanting to learn more or get involved is to join the mailing list. To Subscribe visit
http://two.pairlist.net/mailman/listinfo/reportlab-users. From there you can also
browse through the group's archives and contributions. The mailing list is the place to report bugs and get
support.

1.7 Site Configuration
There are a number of options which most likely need to be configured globally for a site. The python script
module reportlab/rl_config.py may be edited to change the values of several important sitewide
properties.

• verbose: set to integer values to control diagnostic output.
• shapeChecking: set this to zero to turn off a lot of error checking in the graphics modules
• defaultEncoding: set this to WinAnsiEncoding or MacRomanEncoding.
• defaultPageSize: set this to one of the values defined in reportlab/lib/pagesizes.py; as delivered

it is set to pagesizes.A4; other values are pagesizes.letter etc.
• defaultImageCaching: set to zero to inhibit the creation of .a85 files on your hard-drive. The

default is to create these preprocessed PDF compatible image files for faster loading
• T1SearchPath: this is a python list of strings representing directories that may be queried for

information on Type 1 fonts
• TTFSearchPath: this is a python list of strings representing directories that may be queried for

information on TrueType fonts
• CMapSearchPath: this is a python list of strings representing directories that may be queried for

information on font code maps.
• showBoundary: set to non-zero to get boundary lines drawn.
• ZLIB_WARNINGS: set to non-zero to get warnings if the Python compression extension is not

found.
• pageComression: set to non-zero to try and get compressed PDF.
• allowtableBoundsErrors: set to 0 to force an error on very large Platypus table elements
• emptyTableAction: Controls behaviour for empty tables, can be 'error' (default), 'indicate' or

'ignore'.

1.8 Learning More About Python
If you are a total beginner to Python, you should check out one or more from the growing number of
resources on Python programming. The following are freely available on the web:

• Introductory Material on Python. A list of tutorials on the Python.org web site.
http://www.python.org/doc/Intros.html

User Guide Chapter 1 Introduction

Page 6

• Python Tutorial. The official Python Tutorial by Guido van Rossum (edited by Fred L. Drake,
Jr.) http://www.python.org/doc/tut/

• Learning to Program. A tutorial on programming by Alan Gauld. Has a heavy emphasis on
Python, but also uses other languages.
http://www.freenetpages.co.uk/hp/alan.gauld/

• How to think like a computer scientist (Python version).
http://www.ibiblio.org/obp/thinkCSpy/

• Instant Python. A 6-page minimal crash course by Magnus Lie Hetland.
http://www.hetland.org/python/instant-python.php

• Dive Into Python. A free Python tutorial for experienced programmers.
http://diveintopython.org/

1.9 What's New in ReportLab 2.0
Many new features have been added, foremost amongst which is the support for unicode. This page
documents what has changed since version 1.20.

Adding full unicode support meant that we had to break backwards-compatibility, so old code written for
ReportLab 1 will sometimes need changes before it will run correctly with ReportLab 2. Now that we have
made the clean break to introduce this important new feature, we intend to keep the API
backwards-compatible throughout the 2.* series.

Goals for the 2.x series

The main rationale for 2.0 was an incompatible change at the character level: to properly support Unicode
input. Now that it's out we will maintain compatibility with 2.0. There are no pressing feature wishlists and
new features will be driven, as always, by contributions and the demands of projects.

Our 1.x code base is still Python 2.1 compatible. The new version lets us move forwards with a baseline of
Python 2.4 (2.3 will work too, for the moment, but we don't promise that going forwards) so we can use
newer language features freely in our development.

One area where we do want to make progress from release to release is with documentation and installability.
We'll be looking into better support for distutils, setuptools, eggs and so on; and into better examples and
tools to help people learn what's in the (substantial) code base.

Bigger ideas and more substantial rewrites are deferred to Version 3.0, with no particular target dates.

Contributions

Thanks to everybody who has contributed to the open-source toolkit in the run-up to the 2.0 release, whether
by reporting bugs, sending patches, or contributing to the reportlab-users mailing list. Thanks especially to
the following people, who contributed code that has gone into 2.0: Andre Reitz, Max M, Albertas Agejevas,
T Blatter, Ron Peleg, Gary Poster, Steve Halasz, Andrew Mercer, Paul McNett, Chad Miller.
If we missed you, please let us know!

Unicode support

This is the Big One, and the reason some apps may break. You must now pass in text either in UTF-8 or as
unicode string objects. The library will handle everything to do with output encoding. There is more
information on this below. Since this is the biggest change, we'll start by reviewing how it worked in the past.

In ReportLab 1.x, any string input you passed to our APIs was supposed to be in the same encoding as the
font you selected for output. If using the default fonts in Acrobat Reader (Helvetica/Times/Courier), you
would have implicitly used WinAnsi encoding, which is almost exactly the same as Latin-1. However, if
using TrueType fonts, you would have been using UTF-8.

For Asian fonts, you had a wide choice of encodings but had to specify which one (e.g Shift-JIS or EUC for
Japanese). This state of affairs meant that you had to make sure that every piece of text input was in the same
encoding as the font used to display it.

User Guide Chapter 1 Introduction

Page 7

Input text encoding is UTF-8 or Python Unicode strings
Any text you pass to a canvas API (drawString etc.), Paragraph or other flowable constructor, into a
table cell, or as an attribute of a graphic (e.g. chart.title.text), is supposed to be unicode. If you use a
traditional Python string, it is assumed to be UTF-8. If you pass a Unicode object, we know it's
unicode.

Font encodings
Fonts still work in different ways, and the built-in ones will still use WinAnsi or MacRoman
internally while TrueType will use UTF-8. However, the library hides this from you; it converts as it
writes out the PDF file. As before, it's still your job to make sure the font you use has the characters
you need, or you may get either a traceback or a visible error character.

Asian CID fonts
You no longer need to specify the encoding for the built-in Asian fonts, just the face name.
ReportLab knows about the standard fonts in Adobe's Asian Language Packs

Asian Truetype fonts
The standard Truetype fonts differ slightly for Asian languages (e.g msmincho.ttc). These can now
be read and used, albeit somewhat inefficiently.

Asian word wrapping
Previously we could display strings in Asian languages, but could not properly wrap paragraphs as
there are no gaps between the words. We now have a basic word wrapping algorithm.

unichar tag
A convenience tag, <unichar/> has also been added. You can now do ü or <unichar name='LATIN
SMALL LETTER U WITH DIAERESIS'/> and get a lowercase u umlaut. Names should be those in
the Unicode Character Database.

Accents, greeks and symbols
The correct way to refer to all non-ASCII characters is to use their unicode representation. This can
be literal Unicode or UTF-8. Special symbols and Greek letters (collectively, "greeks") inserted in
paragraphs using the greek tag (e.g. <greek>lambda</greek>) or using the entity references (e.g. λ)
are now processed in a different way than in version 1.

Previously, these were always rendered using the Zapf Dingbats font. Now they are always output in
the font you specified, unless that font does not support that character. If the font does not support
the character, and the font you specified was an Adobe Type 1 font, Zapf Dingbats is used as a
fallback. However, at present there is no fallback in the case of TTF fonts. Note that this means that
documents that contain greeks and specify a TTF font may need changing to explicitly specify the
font to use for the greek character, or you will see a black square in place of that character when you
view your PDF output in Acrobat Reader.

Other New Features

PDF
Improved low-level annotation support for PDF "free text annotations"

FreeTextAnnotation allows showing and hiding of an arbitrary PDF "form" (reusable chunk of PDF
content) depending on whether the document is printed or viewed on-screen, or depending on
whether the mouse is hovered over the content, etc.

TTC font collection files are now readable"
ReportLab now supports using TTF fonts packaged in .TTC files

East Asian font support (CID and TTF)
You no longer need to specify the encoding for the built-in Asian fonts, just the face name.
ReportLab knows about the standard fonts in Adobe's Asian Language Packs.

Native support for JPEG CMYK images

User Guide Chapter 1 Introduction

Page 8

ReportLab now takes advantage of PDF's native JPEG CMYK image support, so that JPEG CMYK
images are no longer (lossily) converted to RGB format before including them in PDF.

Platypus
Link support in paragraphs

Platypus paragraphs can now contain link elements, which support both internal links to the same
PDF document, links to other local PDF documents, and URL links to pages on the web. Some
examples:

Web links:

<link href="http://www.reportlab.com/">ReportLab<link>

Internal link to current PDF document:

<link href="summary">ReportLab<link>

External link to a PDF document on the local filesystem:

<link href="pdf:C:/john/report.pdf">ReportLab<link>

Improved wrapping support
Support for wrapping arbitrary sequence of flowables around an image, using
reportlab.platypus.flowables.ImageAndFlowables (similar to ParagraphAndImage).

KeepInFrame
Sometimes the length of a piece of text you'd like to include in a fixed piece of page "real estate" is
not guaranteed to be constrained to a fixed maximum length. In these cases, KeepInFrame allows
you to specify an appropriate action to take when the text is too long for the space allocated for it. In
particular, it can shrink the text to fit, mask (truncate) overflowing text, allow the text to overflow
into the rest of the document, or raise an error.

Improved convenience features for inserting unicode symbols and other characters
 lets you conveniently insert unicode characters using the standard long name or code point.
Characters inserted with the <greek> tags (e.g. λαµβδα) or corresponding entity references (e.g. λ)
support arbitrary fonts (rather than only Zapf Dingbats).

Improvements to Legending
Instead of manual placement, there is now a attachment point (N, S, E, W, etc.), so that the legend is
always automatically positioned correctly relative to the chart. Swatches (the small sample squares
of colour / pattern fill sometimes displayed in the legend) can now be automatically created from the
graph data. Legends can now have automatically-computed totals (useful for financial applications).

More and better ways to place piechart labels
New smart algorithms for automatic pie chart label positioning have been added. You can now
produce nice-looking labels without manual positioning even for awkward cases in big runs of
charts.

Adjustable piechart slice ordering
For example. pie charts with lots of small slices can be configured to alternate thin and thick slices
to help the lagel placememt algorithm work better.

Improved spiderplots

Noteworthy bug fixes

Fixes to TTF splitting (patch from Albertas Agejevas)
This affected some documents using font subsetting

Tables with spans improved splitting
Splitting of tables across pages did not work correctly when the table had row/column spans

Fix runtime error affecting keepWithNext

User Guide Chapter 1 Introduction

Page 9

Chapter 2 Graphics and Text with pdfgen

2.1 Basic Concepts
The pdfgen package is the lowest level interface for generating PDF documents. A pdfgen program is
essentially a sequence of instructions for "painting" a document onto a sequence of pages. The interface
object which provides the painting operations is the pdfgen canvas.

The canvas should be thought of as a sheet of white paper with points on the sheet identified using Cartesian
(X,Y) coordinates which by default have the (0,0) origin point at the lower left corner of the page.
Furthermore the first coordinate x goes to the right and the second coordinate y goes up, by default.

A simple example program that uses a canvas follows.

 from reportlab.pdfgen import canvas
 def hello(c):
 c.drawString(100,100,"Hello World")
 c = canvas.Canvas("hello.pdf")
 hello(c)
 c.showPage()
 c.save()

The above code creates a canvas object which will generate a PDF file named hello.pdf in the
current working directory. It then calls the hello function passing the canvas as an argument. Finally
the showPage method saves the current page of the canvas and the save method stores the file and
closes the canvas.

The showPage method causes the canvas to stop drawing on the current page and any further operations
will draw on a subsequent page (if there are any further operations -- if not no new page is created). The
save method must be called after the construction of the document is complete -- it generates the PDF
document, which is the whole purpose of the canvas object.

2.2 More about the Canvas
Before describing the drawing operations, we will digress to cover some of the things which can be done to
configure a canvas. There are many different settings available. If you are new to Python or can't wait to
produce some output, you can skip ahead, but come back later and read this!

First of all, we will look at the constructor arguments for the canvas:

 def __init__(self,filename,
 pagesize=(595.27,841.89),
 bottomup = 1,
 pageCompression=0,
 encoding=rl_config.defaultEncoding,
 verbosity=0):

The filename argument controls the name of the final PDF file. You may also pass in any open file object
(such as sys.stdout, the python process standard output) and the PDF document will be written to that.
Since PDF is a binary format, you should take care when writing other stuff before or after it; you can't
deliver PDF documents inline in the middle of an HTML page!

The pagesize argument is a tuple of two numbers in points (1/72 of an inch). The canvas defaults to A4
(an international standard page size which differs from the American standard page size of letter), but it is
better to explicitly specify it. Most common page sizes are found in the library module
reportlab.lib.pagesizes, so you can use expressions like

from reportlab.lib.pagesizes import letter, A4
myCanvas = Canvas('myfile.pdf', pagesize=letter)
width, height = letter #keep for later

NOTE If you have problems printing your document make sure you are using the right page size (usually either A4
or letter). Some printers do not work well with pages that are too large or too small.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 10

Very often, you will want to calculate things based on the page size. In the example above we extracted the
width and height. Later in the program we may use the width variable to define a right margin as width
- inch rather than using a constant. By using variables the margin will still make sense even if the page
size changes.

The bottomup argument switches coordinate systems. Some graphics systems (like PDF and PostScript)
place (0,0) at the bottom left of the page others (like many graphical user interfaces [GUI's]) place the origen
at the top left. The bottomup argument is deprecated and may be dropped in future
Need to see if it really works for all tasks, and if not then get rid of it

The pageCompression option determines whether the stream of PDF operations for each page is
compressed. By default page streams are not compressed, because the compression slows the file generation
process. If output size is important set pageCompression=1, but remember that, compressed documents
will be smaller, but slower to generate. Note that images are always compressed, and this option will only
save space if you have a very large amount of text and vector graphics on each page.

The encoding argument is largely obsolete in version 2.0 and can probably be omitted by 99% of users.
Its default value is fine unless you very specifically need to use one of the 25 or so characters which are
present in MacRoman and not in Winansi. A useful reference to these is here:
http://www.alanwood.net/demos/charsetdiffs.html. The parameter determines which font encoding is used for
the standard Type 1 fonts; this should correspond to the encoding on your system. Note that this is the
encoding used internally by the font; text you pass to the ReportLab toolkit for rendering should always
either be a Python unicode string object or a UTF-8 encoded byte string (see the next chapter)! The font
encoding has two values at present: 'WinAnsiEncoding' or 'MacRomanEncoding'. The variable
rl_config.defaultEncoding above points to the former, which is standard on Windows, Mac OS X
and many Unices (including Linux). If you are Mac user and don't have OS X, you may want to make a
global change: modify the line at the top of reportlab/pdfbase/pdfdoc.py to switch it over. Otherwise, you can
probably just ignore this argument completely and never pass it. For all TTF and the commonly-used CID
fonts, the encoding you pass in here is ignored, since the reportlab library itself knows the right encodings in
those cases.

The demo script reportlab/demos/stdfonts.py will print out two test documents showing all code
points in all fonts, so you can look up characters. Special characters can be inserted into string commands
with the usual Python escape sequences; for example \101 = 'A'.

The verbosity argument determines how much log information is printed. By default, it is zero to assist
applications which want to capture PDF from standard output. With a value of 1, you will get a confirmation
message each time a document is generated. Higher numbers may give more output in future.
to do - all the info functions and other non-drawing stuff
Cover all constructor arguments, and setAuthor etc.

2.3 Drawing Operations
Suppose the hello function referenced above is implemented as follows (we will not explain each of the
operations in detail yet).

def hello(c):
 from reportlab.lib.units import inch
 # move the origin up and to the left
 c.translate(inch,inch)
 # define a large font
 c.setFont("Helvetica", 14)
 # choose some colors
 c.setStrokeColorRGB(0.2,0.5,0.3)
 c.setFillColorRGB(1,0,1)
 # draw some lines
 c.line(0,0,0,1.7*inch)
 c.line(0,0,1*inch,0)
 # draw a rectangle
 c.rect(0.2*inch,0.2*inch,1*inch,1.5*inch, fill=1)
 # make text go straight up
 c.rotate(90)
 # change color
 c.setFillColorRGB(0,0,0.77)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 11

 # say hello (note after rotate the y coord needs to be negative!)
 c.drawString(0.3*inch, -inch, "Hello World")

Examining this code notice that there are essentially two types of operations performed using a canvas. The
first type draws something on the page such as a text string or a rectangle or a line. The second type changes
the state of the canvas such as changing the current fill or stroke color or changing the current font type and
size.

If we imagine the program as a painter working on the canvas the "draw" operations apply paint to the canvas
using the current set of tools (colors, line styles, fonts, etcetera) and the "state change" operations change one
of the current tools (changing the fill color from whatever it was to blue, or changing the current font to
Times-Roman in 15 points, for example).

The document generated by the "hello world" program listed above would contain the following graphics.

Figure A-1: "Hello World" in pdfgen

H
el

lo
 W

or
ld

About the demos in this document

This document contains demonstrations of the code discussed like the one shown in the rectangle above.
These demos are drawn on a "tiny page" embedded within the real pages of the guide. The tiny pages are 5.5
inches wide and 3 inches tall. The demo displays show the actual output of the demo code. For convenience
the size of the output has been reduced slightly.

2.4 The tools: the "draw" operations
This section briefly lists the tools available to the program for painting information onto a page using the
canvas interface. These will be discussed in detail in later sections. They are listed here for easy reference
and for summary purposes.

Line methods

canvas.line(x1,y1,x2,y2)

canvas.lines(linelist)

The line methods draw straight line segments on the canvas.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 12

Shape methods

canvas.grid(xlist, ylist)

canvas.bezier(x1, y1, x2, y2, x3, y3, x4, y4)

canvas.arc(x1,y1,x2,y2)

canvas.rect(x, y, width, height, stroke=1, fill=0)

canvas.ellipse(x1,y1, x2,y2, stroke=1, fill=0)

canvas.wedge(x1,y1, x2,y2, startAng, extent, stroke=1, fill=0)

canvas.circle(x_cen, y_cen, r, stroke=1, fill=0)

canvas.roundRect(x, y, width, height, radius, stroke=1, fill=0)

The shape methods draw common complex shapes on the canvas.

String drawing methods

canvas.drawString(x, y, text):

canvas.drawRightString(x, y, text)

canvas.drawCentredString(x, y, text)

The draw string methods draw single lines of text on the canvas.

The text object methods

textobject = canvas.beginText(x, y)

canvas.drawText(textobject)

Text objects are used to format text in ways that are not supported directly by the canvas interface. A
program creates a text object from the canvas using beginText and then formats text by invoking
textobject methods. Finally the textobject is drawn onto the canvas using drawText.

The path object methods

path = canvas.beginPath()

canvas.drawPath(path, stroke=1, fill=0)

canvas.clipPath(path, stroke=1, fill=0)

Path objects are similar to text objects: they provide dedicated control for performing complex graphical
drawing not directly provided by the canvas interface. A program creates a path object using beginPath
populates the path with graphics using the methods of the path object and then draws the path on the canvas
using drawPath.

It is also possible to use a path as a "clipping region" using the clipPath method -- for example a circular
path can be used to clip away the outer parts of a rectangular image leaving only a circular part of the image
visible on the page.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 13

Image methods

NOTE You need the Python Imaging Library (PIL) to use images with the ReportLab package. Examnples of the
techniques below can be found by running the script test_pdfgen_general.py in our test
subdirectory and looking at page 7 of the output.

There are two similar-sounding ways to draw images. The preferred one is the drawImage method. This
implements a caching system so you can define an image once and draw it many times; it will only be stored
once in the PDF file. drawImage also exposes one advanced parameter, a transparency mask, and will
expose more in future. The older technique, drawInlineImage, stores bitmaps within the page stream
and is thus very inefficient if you use the same image more than once in a document; but can result in PDFs
which render faster if the images are very small and not repeated. We'll discuss the oldest one first:

canvas.drawInlineImage(self, image, x,y, width=None,height=None)

The drawInlineImage method places an image on the canvas. The image parameter may be either a
PIL Image object or an image filename. Many common file formats are accepted including GIF and JPEG. It
returns the size of the actual image in pixels as a (width, height) tuple.

canvas.drawImage(self, image, x,y, width=None,height=None,mask=None)

The arguments and return value work as for drawInlineImage. However, we use a caching system; a
given image will only be stored the first time it is used, and just referenced on subsequent use. If you supply
a filename, it assumes that the same filename means the same image. If you supply a PIL image, it tests if the
content has actually changed before re-embedding.

The mask parameter lets you create transparent images. It takes 6 numbers and defines the range of RGB
values which will be masked out or treated as transparent. For example with [0,2,40,42,136,139], it will mask
out any pixels with a Red value from 0 or 1, Green from 40 or 41 and Blue of 136, 137 or 138 (on a scale of
0-255). It's currently your job to know which color is the 'transparent' or background one.

PDF allows for many image features and we will expose more of the over time, probably with extra keyword
arguments to drawImage.

Ending a page

canvas.showPage()

The showPage method finishes the current page. All additional drawing will be done on another page.

NOTE Warning! All state changes (font changes, color settings, geometry transforms, etcetera) are FORGOTTEN
when you advance to a new page in pdfgen. Any state settings you wish to preserve must be set up again
before the program proceeds with drawing!

2.5 The toolbox: the "state change" operations
This section briefly lists the ways to switch the tools used by the program for painting information onto a
page using the canvas interface. These too will be discussed in detail in later sections.

Changing Colors

canvas.setFillColorCMYK(c, m, y, k)

canvas.setStrikeColorCMYK(c, m, y, k)

canvas.setFillColorRGB(r, g, b)

canvas.setStrokeColorRGB(r, g, b)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 14

canvas.setFillColor(acolor)

canvas.setStrokeColor(acolor)

canvas.setFillGray(gray)

canvas.setStrokeGray(gray)

PDF supports three different color models: gray level, additive (red/green/blue or RGB), and subtractive with
darkness parameter (cyan/magenta/yellow/darkness or CMYK). The ReportLab packages also provide named
colors such as lawngreen. There are two basic color parameters in the graphics state: the Fill color for
the interior of graphic figures and the Stroke color for the boundary of graphic figures. The above
methods support setting the fill or stroke color using any of the four color specifications.

Changing Fonts

canvas.setFont(psfontname, size, leading = None)

The setFont method changes the current text font to a given type and size. The leading parameter
specifies the distance down to move when advancing from one text line to the next.

Changing Graphical Line Styles

canvas.setLineWidth(width)

canvas.setLineCap(mode)

canvas.setLineJoin(mode)

canvas.setMiterLimit(limit)

canvas.setDash(self, array=[], phase=0)

Lines drawn in PDF can be presented in a number of graphical styles. Lines can have different widths, they
can end in differing cap styles, they can meet in different join styles, and they can be continuous or they can
be dotted or dashed. The above methods adjust these various parameters.

Changing Geometry

canvas.setPageSize(pair)

canvas.transform(a,b,c,d,e,f):

canvas.translate(dx, dy)

canvas.scale(x, y)

canvas.rotate(theta)

canvas.skew(alpha, beta)

All PDF drawings fit into a specified page size. Elements drawn outside of the specified page size are not
visible. Furthermore all drawn elements are passed through an affine transformation which may adjust their
location and/or distort their appearence. The setPageSize method adjusts the current page size. The
transform, translate, scale, rotate, and skew methods add additional transformations to the
current transformation. It is important to remember that these transformations are incremental -- a new
transform modifies the current transform (but does not replace it).

User Guide Chapter 2 Graphics and Text with pdfgen

Page 15

State control

canvas.saveState()

canvas.restoreState()

Very often it is important to save the current font, graphics transform, line styles and other graphics state in
order to restore them later. The saveState method marks the current graphics state for later restoration by
a matching restoreState. Note that the save and restore method invokation must match -- a restore call
restores the state to the most recently saved state which hasn't been restored yet. You cannot save the state on
one page and restore it on the next, however -- no state is preserved between pages.

2.6 Other canvas methods.
Not all methods of the canvas object fit into the "tool" or "toolbox" categories. Below are some of the
misfits, included here for completeness.

 canvas.setAuthor()
 canvas.addOutlineEntry(title, key, level=0, closed=None)
 canvas.setTitle(title)
 canvas.setSubject(subj)
 canvas.pageHasData()
 canvas.showOutline()
 canvas.bookmarkPage(name)
 canvas.bookmarkHorizontalAbsolute(name, yhorizontal)
 canvas.doForm()
 canvas.beginForm(name, lowerx=0, lowery=0, upperx=None, uppery=None)
 canvas.endForm()
 canvas.linkAbsolute(contents, destinationname, Rect=None, addtopage=1, name=None, **kw)
 canvas.getPageNumber()
 canvas.addLiteral()
 canvas.getAvailableFonts()
 canvas.stringWidth(self, text, fontName, fontSize, encoding=None)
 canvas.setPageCompression(onoff=1)
 canvas.setPageTransition(self, effectname=None, duration=1,
 direction=0,dimension='H',motion='I')

2.7 Coordinates (default user space)
By default locations on a page are identified by a pair of numbers. For example the pair (4.5*inch,
1*inch) identifies the location found on the page by starting at the lower left corner and moving to the
right 4.5 inches and up one inch.

For example, the following function draws a number of elements on a canvas.

def coords(canvas):
 from reportlab.lib.units import inch
 from reportlab.lib.colors import pink, black, red, blue, green
 c = canvas
 c.setStrokeColor(pink)
 c.grid([inch, 2*inch, 3*inch, 4*inch], [0.5*inch, inch, 1.5*inch, 2*inch, 2.5*inch])
 c.setStrokeColor(black)
 c.setFont("Times-Roman", 20)
 c.drawString(0,0, "(0,0) the Origin")
 c.drawString(2.5*inch, inch, "(2.5,1) in inches")
 c.drawString(4*inch, 2.5*inch, "(4, 2.5)")
 c.setFillColor(red)
 c.rect(0,2*inch,0.2*inch,0.3*inch, fill=1)
 c.setFillColor(green)
 c.circle(4.5*inch, 0.4*inch, 0.2*inch, fill=1)

In the default user space the "origin" (0,0) point is at the lower left corner. Executing the coords
function in the default user space (for the "demo minipage") we obtain the following.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 16

Figure A-2: The Coordinate System
(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

Moving the origin: the translate method

Often it is useful to "move the origin" to a new point off the lower left corner. The
canvas.translate(x,y) method moves the origin for the current page to the point currently identified
by (x,y).

For example the following translate function first moves the origin before drawing the same objects as shown
above.

def translate(canvas):
 from reportlab.lib.units import cm
 canvas.translate(2.3*cm, 0.3*cm)
 coords(canvas)

This produces the following.

Figure A-3: Moving the origin: the translate method

(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

NOTE

User Guide Chapter 2 Graphics and Text with pdfgen

Page 17

Note: As illustrated in the example it is perfectly possible to draw objects or parts of objects "off the page".
In particular a common confusing bug is a translation operation that translates the entire drawing off the
visible area of the page. If a program produces a blank page it is possible that all the drawn objects are off the
page.

Shrinking and growing: the scale operation

Another important operation is scaling. The scaling operation canvas.scale(dx,dy) stretches or
shrinks the x and y dimensions by the dx, dy factors respectively. Often dx and dy are the same -- for
example to reduce a drawing by half in all dimensions use dx = dy = 0.5. However for the purposes of
illustration we show an example where dx and dy are different.

def scale(canvas):
 canvas.scale(0.75, 0.5)
 coords(canvas)

This produces a "short and fat" reduced version of the previously displayed operations.

Figure A-4: Scaling the coordinate system
(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

NOTE Note: scaling may also move objects or parts of objects off the page, or may cause objects to "shrink to
nothing."

Scaling and translation can be combined, but the order of the operations are important.

def scaletranslate(canvas):
 from reportlab.lib.units import inch
 canvas.setFont("Courier-BoldOblique", 12)
 # save the state
 canvas.saveState()
 # scale then translate
 canvas.scale(0.3, 0.5)
 canvas.translate(2.4*inch, 1.5*inch)
 canvas.drawString(0, 2.7*inch, "Scale then translate")
 coords(canvas)
 # forget the scale and translate...
 canvas.restoreState()
 # translate then scale
 canvas.translate(2.4*inch, 1.5*inch)
 canvas.scale(0.3, 0.5)
 canvas.drawString(0, 2.7*inch, "Translate then scale")
 coords(canvas)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 18

This example function first saves the current canvas state and then does a scale followed by a
translate. Afterward the function restores the state (effectively removing the effects of the scaling and
translation) and then does the same operations in a different order. Observe the effect below.

Figure A-5: Scaling and Translating

Scale then translate

(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

Translate then scale

(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

NOTE Note: scaling shrinks or grows everything including line widths so using the canvas.scale method to render a
microscopic drawing in scaled microscopic units may produce a blob (because all line widths will get
expanded a huge amount). Also rendering an aircraft wing in meters scaled to centimeters may cause the
lines to shrink to the point where they disappear. For engineering or scientific purposes such as these scale
and translate the units externally before rendering them using the canvas.

Saving and restoring the canvas state: saveState and restoreState

The scaletranslate function used an important feature of the canvas object: the ability to save and
restore the current parameters of the canvas. By enclosing a sequence of operations in a matching pair of
canvas.saveState() an canvas.restoreState() operations all changes of font, color, line
style, scaling, translation, or other aspects of the canvas graphics state can be restored to the state at the
point of the saveState(). Remember that the save/restore calls must match: a stray save or restore
operation may cause unexpected and undesirable behavior. Also, remember that no canvas state is
preserved across page breaks, and the save/restore mechanism does not work across page breaks.

Mirror image

It is interesting although perhaps not terribly useful to note that scale factors can be negative. For example
the following function

def mirror(canvas):
 from reportlab.lib.units import inch
 canvas.translate(5.5*inch, 0)
 canvas.scale(-1.0, 1.0)
 coords(canvas)

creates a mirror image of the elements drawn by the coord function.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 19

Figure A-6: Mirror Images
(0,0) the Origin

(2.5,1) in inches

(4, 2.5)

Notice that the text strings are painted backwards.

2.8 Colors
There are four ways to specify colors in pdfgen: by name (using the color module, by red/green/blue
(additive, RGB) value, by cyan/magenta/yellow/darkness (subtractive, CMYK), or by gray level. The
colors function below exercises each of the four methods.

def colors(canvas):
 from reportlab.lib import colors
 from reportlab.lib.units import inch
 black = colors.black
 y = x = 0; dy=inch*3/4.0; dx=inch*5.5/5; w=h=dy/2; rdx=(dx-w)/2
 rdy=h/5.0; texty=h+2*rdy
 canvas.setFont("Helvetica",10)
 for [namedcolor, name] in (
 [colors.lavenderblush, "lavenderblush"],
 [colors.lawngreen, "lawngreen"],
 [colors.lemonchiffon, "lemonchiffon"],
 [colors.lightblue, "lightblue"],
 [colors.lightcoral, "lightcoral"]):
 canvas.setFillColor(namedcolor)
 canvas.rect(x+rdx, y+rdy, w, h, fill=1)
 canvas.setFillColor(black)
 canvas.drawCentredString(x+dx/2, y+texty, name)
 x = x+dx
 y = y + dy; x = 0
 for rgb in [(1,0,0), (0,1,0), (0,0,1), (0.5,0.3,0.1), (0.4,0.5,0.3)]:
 r,g,b = rgb
 canvas.setFillColorRGB(r,g,b)
 canvas.rect(x+rdx, y+rdy, w, h, fill=1)
 canvas.setFillColor(black)
 canvas.drawCentredString(x+dx/2, y+texty, "r%s g%s b%s"%rgb)
 x = x+dx
 y = y + dy; x = 0
 for cmyk in [(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,0,0,0)]:
 c,m,y1,k = cmyk
 canvas.setFillColorCMYK(c,m,y1,k)
 canvas.rect(x+rdx, y+rdy, w, h, fill=1)
 canvas.setFillColor(black)
 canvas.drawCentredString(x+dx/2, y+texty, "c%s m%s y%s k%s"%cmyk)
 x = x+dx
 y = y + dy; x = 0
 for gray in (0.0, 0.25, 0.50, 0.75, 1.0):
 canvas.setFillGray(gray)
 canvas.rect(x+rdx, y+rdy, w, h, fill=1)
 canvas.setFillColor(black)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 20

 canvas.drawCentredString(x+dx/2, y+texty, "gray: %s"%gray)
 x = x+dx

The RGB or additive color specification follows the way a computer screen adds different levels of the red,
green, or blue light to make any color, where white is formed by turning all three lights on full (1,1,1).

The CMYK or subtractive method follows the way a printer mixes three pigments (cyan, magenta, and
yellow) to form colors. Because mixing chemicals is more difficult than combining light there is a fourth
parameter for darkness. For example a chemical combination of the CMY pigments generally never makes a
perfect black -- instead producing a muddy color -- so, to get black printers don't use the CMY pigments but
use a direct black ink. Because CMYK maps more directly to the way printer hardware works it may be the
case that colors specified in CMYK will provide better fidelity and better control when printed.

Figure A-7: Color Models

lavenderblush lawngreen lemonchiffon lightblue lightcoral

r1 g0 b0 r0 g1 b0 r0 g0 b1 r0.5 g0.3 b0.1 r0.4 g0.5 b0.3

c1 m0 y0 k0 c0 m1 y0 k0 c0 m0 y1 k0 c0 m0 y0 k1 c0 m0 y0 k0

gray: 0.0 gray: 0.25 gray: 0.5 gray: 0.75 gray: 1.0

2.9 Painting back to front
Objects may be painted over other objects to good effect in pdfgen. As in painting with oils the object
painted last will show up on top. For example, the spumoni function below paints up a base of colors and
then paints a white text over the base.

def spumoni(canvas):
 from reportlab.lib.units import inch
 from reportlab.lib.colors import pink, green, brown, white
 x = 0; dx = 0.4*inch
 for i in range(4):
 for color in (pink, green, brown):
 canvas.setFillColor(color)
 canvas.rect(x,0,dx,3*inch,stroke=0,fill=1)
 x = x+dx
 canvas.setFillColor(white)
 canvas.setStrokeColor(white)
 canvas.setFont("Helvetica-Bold", 85)
 canvas.drawCentredString(2.75*inch, 1.3*inch, "SPUMONI")

The word "SPUMONI" is painted in white over the colored rectangles, with the apparent effect of
"removing" the color inside the body of the word.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 21

Figure A-8: Painting over colors

SPUMONI

The last letters of the word are not visible because the default canvas background is white and painting
white letters over a white background leaves no visible effect.

This method of building up complex paintings in layers can be done in very many layers in pdfgen -- there
are fewer physical limitations than there are when dealing with physical paints.

def spumoni2(canvas):
 from reportlab.lib.units import inch
 from reportlab.lib.colors import pink, green, brown, white, black
 # draw the previous drawing
 spumoni(canvas)
 # now put an ice cream cone on top of it:
 # first draw a triangle (ice cream cone)
 p = canvas.beginPath()
 xcenter = 2.75*inch
 radius = 0.45*inch
 p.moveTo(xcenter-radius, 1.5*inch)
 p.lineTo(xcenter+radius, 1.5*inch)
 p.lineTo(xcenter, 0)
 canvas.setFillColor(brown)
 canvas.setStrokeColor(black)
 canvas.drawPath(p, fill=1)
 # draw some circles (scoops)
 y = 1.5*inch
 for color in (pink, green, brown):
 canvas.setFillColor(color)
 canvas.circle(xcenter, y, radius, fill=1)
 y = y+radius

The spumoni2 function layers an ice cream cone over the spumoni drawing. Note that different parts of
the cone and scoops layer over eachother as well.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 22

Figure A-9: building up a drawing in layers

SPUMONI

2.10 Standard fonts and text objects
Text may be drawn in many different colors, fonts, and sizes in pdfgen. The textsize function
demonstrates how to change the color and font and size of text and how to place text on the page.

def textsize(canvas):
 from reportlab.lib.units import inch
 from reportlab.lib.colors import magenta, red
 canvas.setFont("Times-Roman", 20)
 canvas.setFillColor(red)
 canvas.drawCentredString(2.75*inch, 2.5*inch, "Font size examples")
 canvas.setFillColor(magenta)
 size = 7
 y = 2.3*inch
 x = 1.3*inch
 for line in lyrics:
 canvas.setFont("Helvetica", size)
 canvas.drawRightString(x,y,"%s points: " % size)
 canvas.drawString(x,y, line)
 y = y-size*1.2
 size = size+1.5

The textsize function generates the following page.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 23

Figure A-10: text in different fonts and sizes

Font size examples
7 points: well she hit Net Solutions

8.5 points: and she registered her own .com site now
10.0 points: and filled it up with yahoo profile pics

11.5 points: she snarfed in one night now
13.0 points: and she made 50 million when Hugh Hefner

14.5 points: bought up the rights now
16.0 points: and she'll have fun fun fun

17.5 points: til her Daddy takes the keyboard away

A number of different fonts are always available in pdfgen.

def fonts(canvas):
 from reportlab.lib.units import inch
 text = "Now is the time for all good men to..."
 x = 1.8*inch
 y = 2.7*inch
 for font in canvas.getAvailableFonts():
 canvas.setFont(font, 10)
 canvas.drawString(x,y,text)
 canvas.setFont("Helvetica", 10)
 canvas.drawRightString(x-10,y, font+":")
 y = y-13

The fonts function lists the fonts that are always available. These don't need to be stored in a PDF
document, since they are guaranteed to be present in Acrobat Reader.

Figure A-11: the 14 standard fonts

Now is the time for all good men to...Courier:
Now is the time for all good men to...Courier-Bold:
Now is the time for all good men to...Courier-BoldOblique:
Now is the time for all good men to...Courier-Oblique:
Now is the time for all good men to...Helvetica:
Now is the time for all good men to...Helvetica-Bold:
Now is the time for all good men to...Helvetica-BoldOblique:
Now is the time for all good men to...Helvetica-Oblique:
■■■ ■■ ■■■ ■■■■ ■■■ ■■■ ■■■■ ■■■ ■■...Symbol:
Now is the time for all good men to...Times-Bold:
Now is the time for all good men to...Times-BoldItalic:
Now is the time for all good men to...Times-Italic:
Now is the time for all good men to...Times-Roman:
■■■ ■■ ■■■ ■■■■ ■■■ ■■■ ■■■■ ■■■ ■■■■■ZapfDingbats:

For information on how to use arbitrary fonts, see the next chapter.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 24

2.11 Text object methods
For the dedicated presentation of text in a PDF document, use a text object. The text object interface provides
detailed control of text layout parameters not available directly at the canvas level. In addition, it results in
smaller PDF that will render faster than many separate calls to the drawString methods.

textobject.setTextOrigin(x,y)

textobject.setTextTransform(a,b,c,d,e,f)

textobject.moveCursor(dx, dy) # from start of current LINE

(x,y) = textobject.getCursor()

x = textobject.getX(); y = textobject.getY()

textobject.setFont(psfontname, size, leading = None)

textobject.textOut(text)

textobject.textLine(text='')

textobject.textLines(stuff, trim=1)

The text object methods shown above relate to basic text geometry.

A text object maintains a text cursor which moves about the page when text is drawn. For example the
setTextOrigin places the cursor in a known position and the textLine and textLines methods
move the text cursor down past the lines that have been missing.

def cursormoves1(canvas):
 from reportlab.lib.units import inch
 textobject = canvas.beginText()
 textobject.setTextOrigin(inch, 2.5*inch)
 textobject.setFont("Helvetica-Oblique", 14)
 for line in lyrics:
 textobject.textLine(line)
 textobject.setFillGray(0.4)
 textobject.textLines('''
 With many apologies to the Beach Boys
 and anyone else who finds this objectionable
 ''')
 canvas.drawText(textobject)

The cursormoves function relies on the automatic movement of the text cursor for placing text after the
origin has been set.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 25

Figure A-12: How the text cursor moves

well she hit Net Solutions
and she registered her own .com site now
and filled it up with yahoo profile pics
she snarfed in one night now
and she made 50 million when Hugh Hefner
bought up the rights now
and she'll have fun fun fun
til her Daddy takes the keyboard away
With many apologies to the Beach Boys
and anyone else who finds this objectionable

It is also possible to control the movement of the cursor more explicitly by using the moveCursor method
(which moves the cursor as an offset from the start of the current line NOT the current cursor, and which also
has positive y offsets move down (in contrast to the normal geometry where positive y usually moves up.

def cursormoves2(canvas):
 from reportlab.lib.units import inch
 textobject = canvas.beginText()
 textobject.setTextOrigin(2, 2.5*inch)
 textobject.setFont("Helvetica-Oblique", 14)
 for line in lyrics:
 textobject.textOut(line)
 textobject.moveCursor(14,14) # POSITIVE Y moves down!!!
 textobject.setFillColorRGB(0.4,0,1)
 textobject.textLines('''
 With many apologies to the Beach Boys
 and anyone else who finds this objectionable
 ''')
 canvas.drawText(textobject)

Here the textOut does not move the down a line in contrast to the textLine function which does move
down.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 26

Figure A-13: How the text cursor moves again

well she hit Net Solutions
and she registered her own .com site now

and filled it up with yahoo profile pics
she snarfed in one night now

and she made 50 million when Hugh Hefner
bought up the rights now

and she'll have fun fun fun
til her Daddy takes the keyboard away

With many apologies to the Beach Boys
and anyone else who finds this objectionable

Character Spacing

textobject.setCharSpace(charSpace)

The setCharSpace method adjusts one of the parameters of text -- the inter-character spacing.

def charspace(canvas):
 from reportlab.lib.units import inch
 textobject = canvas.beginText()
 textobject.setTextOrigin(3, 2.5*inch)
 textobject.setFont("Helvetica-Oblique", 10)
 charspace = 0
 for line in lyrics:
 textobject.setCharSpace(charspace)
 textobject.textLine("%s: %s" %(charspace,line))
 charspace = charspace+0.5
 textobject.setFillGray(0.4)
 textobject.textLines('''
 With many apologies to the Beach Boys
 and anyone else who finds this objectionable
 ''')
 canvas.drawText(textobject)

The charspace function exercises various spacing settings. It produces the following page.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 27

Figure A-14: Adjusting inter-character spacing

0: well she hit Net Solutions
0.5: and she registered her own .com site now
1.0: and f i l led i t up wi th yahoo prof i le pics
1 . 5 : s h e s n a r f e d i n o n e n i g h t n o w
2 . 0 : a n d s h e m a d e 5 0 m i l l i o n w h e n H u g h H e f n e r
2 . 5 : b o u g h t u p t h e r i g h t s n o w
3 . 0 : a n d s h e ' l l h a v e f u n f u n f u n
3 . 5 : t i l h e r D a d d y t a k e s t h e k e y b o a r d a w a y
W i t h m a n y a p o l o g i e s t o t h e B e a c h B o y s
a n d a n y o n e e l s e w h o f i n d s t h i s o b j e c t i o n a b l e

Word Spacing

textobject.setWordSpace(wordSpace)

The setWordSpace method adjusts the space between words.

def wordspace(canvas):
 from reportlab.lib.units import inch
 textobject = canvas.beginText()
 textobject.setTextOrigin(3, 2.5*inch)
 textobject.setFont("Helvetica-Oblique", 12)
 wordspace = 0
 for line in lyrics:
 textobject.setWordSpace(wordspace)
 textobject.textLine("%s: %s" %(wordspace,line))
 wordspace = wordspace+2.5
 textobject.setFillColorCMYK(0.4,0,0.4,0.2)
 textobject.textLines('''
 With many apologies to the Beach Boys
 and anyone else who finds this objectionable
 ''')
 canvas.drawText(textobject)

The wordspace function shows what various word space settings look like below.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 28

Figure A-15: Adjusting word spacing

0: well she hit Net Solutions
2.5: and she registered her own .com site now
5.0: and filled it up with yahoo profile pics
7.5: she snarfed in one night now
10.0: and she made 50 million when Hugh Hefner
12.5: bought up the rights now
15.0: and she'll have fun fun fun
17.5: til her Daddy takes the keyboard away
With many apologies to the Beach Boys
and anyone else who finds this objectionable

Horizontal Scaling

textobject.setHorizScale(horizScale)

Lines of text can be stretched or shrunken horizontally by the setHorizScale method.

def horizontalscale(canvas):
 from reportlab.lib.units import inch
 textobject = canvas.beginText()
 textobject.setTextOrigin(3, 2.5*inch)
 textobject.setFont("Helvetica-Oblique", 12)
 horizontalscale = 80 # 100 is default
 for line in lyrics:
 textobject.setHorizScale(horizontalscale)
 textobject.textLine("%s: %s" %(horizontalscale,line))
 horizontalscale = horizontalscale+10
 textobject.setFillColorCMYK(0.0,0.4,0.4,0.2)
 textobject.textLines('''
 With many apologies to the Beach Boys
 and anyone else who finds this objectionable
 ''')
 canvas.drawText(textobject)

The horizontal scaling parameter horizScale is given in percentages (with 100 as the default), so the 80
setting shown below looks skinny.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 29

Figure A-16: adjusting horizontal text scaling

80: well she hit Net Solutions
90: and she registered her own .com site now
100: and filled it up with yahoo profile pics
110: she snarfed in one night now
120: and she made 50 million when Hugh Hefner
130: bought up the rights now
140: and she'll have fun fun fun
150: til her Daddy takes the keyboard away
With many apologies to the Beach Boys
and anyone else who finds this objectionable

Interline spacing (Leading)

textobject.setLeading(leading)

The vertical offset between the point at which one line starts and where the next starts is called the leading
offset. The setLeading method adjusts the leading offset.

def leading(canvas):
 from reportlab.lib.units import inch
 textobject = canvas.beginText()
 textobject.setTextOrigin(3, 2.5*inch)
 textobject.setFont("Helvetica-Oblique", 14)
 leading = 8
 for line in lyrics:
 textobject.setLeading(leading)
 textobject.textLine("%s: %s" %(leading,line))
 leading = leading+2.5
 textobject.setFillColorCMYK(0.8,0,0,0.3)
 textobject.textLines('''
 With many apologies to the Beach Boys
 and anyone else who finds this objectionable
 ''')
 canvas.drawText(textobject)

As shown below if the leading offset is set too small characters of one line my write over the bottom parts of
characters in the previous line.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 30

Figure A-17: adjusting the leading

8: well she hit Net Solutions10.5: and she registered her own .com site now
13.0: and filled it up with yahoo profile pics
15.5: she snarfed in one night now
18.0: and she made 50 million when Hugh Hefner
20.5: bought up the rights now

23.0: and she'll have fun fun fun

25.5: til her Daddy takes the keyboard away

With many apologies to the Beach Boys

and anyone else who finds this objectionable

Other text object methods

textobject.setTextRenderMode(mode)

The setTextRenderMode method allows text to be used as a forground for clipping background
drawings, for example.

textobject.setRise(rise)

The setRise method raises or
lowers

 text on the line (for creating superscripts or subscripts, for example).

textobject.setFillColor(aColor);
textobject.setStrokeColor(self, aColor)
and similar

These color change operations change the color of the text and are otherwise similar to the color methods for
the canvas object.

2.12 Paths and Lines
Just as textobjects are designed for the dedicated presentation of text, path objects are designed for the
dedicated construction of graphical figures. When path objects are drawn onto a canvas they are drawn as
one figure (like a rectangle) and the mode of drawing for the entire figure can be adjusted: the lines of the
figure can be drawn (stroked) or not; the interior of the figure can be filled or not; and so forth.

For example the star function uses a path object to draw a star

def star(canvas, title="Title Here", aka="Comment here.",
 xcenter=None, ycenter=None, nvertices=5):
 from math import pi
 from reportlab.lib.units import inch
 radius=inch/3.0
 if xcenter is None: xcenter=2.75*inch
 if ycenter is None: ycenter=1.5*inch
 canvas.drawCentredString(xcenter, ycenter+1.3*radius, title)
 canvas.drawCentredString(xcenter, ycenter-1.4*radius, aka)
 p = canvas.beginPath()
 p.moveTo(xcenter,ycenter+radius)
 from math import pi, cos, sin
 angle = (2*pi)*2/5.0
 startangle = pi/2.0
 for vertex in range(nvertices-1):

User Guide Chapter 2 Graphics and Text with pdfgen

Page 31

 nextangle = angle*(vertex+1)+startangle
 x = xcenter + radius*cos(nextangle)
 y = ycenter + radius*sin(nextangle)
 p.lineTo(x,y)
 if nvertices==5:
 p.close()
 canvas.drawPath(p)

The star function has been designed to be useful in illustrating various line style parameters supported by
pdfgen.

Figure A-18: line style parameters

Title Here

Comment here.

Line join settings

The setLineJoin method can adjust whether line segments meet in a point a square or a rounded vertex.

def joins(canvas):
 from reportlab.lib.units import inch
 # make lines big
 canvas.setLineWidth(5)
 star(canvas, "Default: mitered join", "0: pointed", xcenter = 1*inch)
 canvas.setLineJoin(1)
 star(canvas, "Round join", "1: rounded")
 canvas.setLineJoin(2)
 star(canvas, "Bevelled join", "2: square", xcenter=4.5*inch)

The line join setting is only really of interest for thick lines because it cannot be seen clearly for thin lines.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 32

Figure A-19: different line join styles

Default: mitered join

0: pointed

Round join

1: rounded

Bevelled join

2: square

Line cap settings

The line cap setting, adjusted using the setLineCap method, determines whether a terminating line ends
in a square exactly at the vertex, a square over the vertex or a half circle over the vertex.

def caps(canvas):
 from reportlab.lib.units import inch
 # make lines big
 canvas.setLineWidth(5)
 star(canvas, "Default", "no projection",xcenter = 1*inch,
 nvertices=4)
 canvas.setLineCap(1)
 star(canvas, "Round cap", "1: ends in half circle", nvertices=4)
 canvas.setLineCap(2)
 star(canvas, "Square cap", "2: projects out half a width", xcenter=4.5*inch,
 nvertices=4)

The line cap setting, like the line join setting, is only clearly visible when the lines are thick.

Figure A-20: line cap settings

Default

no projection

Round cap

1: ends in half circle

Square cap

2: projects out half a width

User Guide Chapter 2 Graphics and Text with pdfgen

Page 33

Dashes and broken lines

The setDash method allows lines to be broken into dots or dashes.

def dashes(canvas):
 from reportlab.lib.units import inch
 # make lines big
 canvas.setDash(6,3)
 star(canvas, "Simple dashes", "6 points on, 3 off", xcenter = 1*inch)
 canvas.setDash(1,2)
 star(canvas, "Dots", "One on, two off")
 canvas.setDash([1,1,3,3,1,4,4,1], 0)
 star(canvas, "Complex Pattern", "[1,1,3,3,1,4,4,1]", xcenter=4.5*inch)

The patterns for the dashes or dots can be in a simple on/off repeating pattern or they can be specified in a
complex repeating pattern.

Figure A-21: some dash patterns

Simple dashes

6 points on, 3 off

Dots

One on, two off

Complex Pattern

[1,1,3,3,1,4,4,1]

Creating complex figures with path objects

Combinations of lines, curves, arcs and other figures can be combined into a single figure using path objects.
For example the function shown below constructs two path objects using lines and curves. This function will
be used later on as part of a pencil icon construction.

def penciltip(canvas, debug=1):
 from reportlab.lib.colors import tan, black, green
 from reportlab.lib.units import inch
 u = inch/10.0
 canvas.setLineWidth(4)
 if debug:
 canvas.scale(2.8,2.8) # make it big
 canvas.setLineWidth(1) # small lines
 canvas.setStrokeColor(black)
 canvas.setFillColor(tan)
 p = canvas.beginPath()
 p.moveTo(10*u,0)
 p.lineTo(0,5*u)
 p.lineTo(10*u,10*u)
 p.curveTo(11.5*u,10*u, 11.5*u,7.5*u, 10*u,7.5*u)
 p.curveTo(12*u,7.5*u, 11*u,2.5*u, 9.7*u,2.5*u)
 p.curveTo(10.5*u,2.5*u, 11*u,0, 10*u,0)
 canvas.drawPath(p, stroke=1, fill=1)
 canvas.setFillColor(black)
 p = canvas.beginPath()
 p.moveTo(0,5*u)
 p.lineTo(4*u,3*u)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 34

 p.lineTo(5*u,4.5*u)
 p.lineTo(3*u,6.5*u)
 canvas.drawPath(p, stroke=1, fill=1)
 if debug:
 canvas.setStrokeColor(green) # put in a frame of reference
 canvas.grid([0,5*u,10*u,15*u], [0,5*u,10*u])

Note that the interior of the pencil tip is filled as one object even though it is constructed from several lines
and curves. The pencil lead is then drawn over it using a new path object.

Figure A-22: a pencil tip

2.13 Rectangles, circles, ellipses
The pdfgen module supports a number of generally useful shapes such as rectangles, rounded rectangles,
ellipses, and circles. Each of these figures can be used in path objects or can be drawn directly on a canvas.
For example the pencil function below draws a pencil icon using rectangles and rounded rectangles with
various fill colors and a few other annotations.

def pencil(canvas, text="No.2"):
 from reportlab.lib.colors import yellow, red, black,white
 from reportlab.lib.units import inch
 u = inch/10.0
 canvas.setStrokeColor(black)
 canvas.setLineWidth(4)
 # draw erasor
 canvas.setFillColor(red)
 canvas.circle(30*u, 5*u, 5*u, stroke=1, fill=1)
 # draw all else but the tip (mainly rectangles with different fills)
 canvas.setFillColor(yellow)
 canvas.rect(10*u,0,20*u,10*u, stroke=1, fill=1)
 canvas.setFillColor(black)
 canvas.rect(23*u,0,8*u,10*u,fill=1)
 canvas.roundRect(14*u, 3.5*u, 8*u, 3*u, 1.5*u, stroke=1, fill=1)
 canvas.setFillColor(white)
 canvas.rect(25*u,u,1.2*u,8*u, fill=1,stroke=0)
 canvas.rect(27.5*u,u,1.2*u,8*u, fill=1, stroke=0)
 canvas.setFont("Times-Roman", 3*u)
 canvas.drawCentredString(18*u, 4*u, text)
 # now draw the tip
 penciltip(canvas,debug=0)
 # draw broken lines across the body.
 canvas.setDash([10,5,16,10],0)
 canvas.line(11*u,2.5*u,22*u,2.5*u)
 canvas.line(22*u,7.5*u,12*u,7.5*u)

NOTE

User Guide Chapter 2 Graphics and Text with pdfgen

Page 35

Note that this function is used to create the "margin pencil" to the left. Also note that the order in which the
elements are drawn are important because, for example, the white rectangles "erase" parts of a black
rectangle and the "tip" paints over part of the yellow rectangle.

Figure A-23: a whole pencil

No.2

2.14 Bezier curves
Programs that wish to construct figures with curving borders generally use Bezier curves to form the borders.

def bezier(canvas):
 from reportlab.lib.colors import yellow, green, red, black
 from reportlab.lib.units import inch
 i = inch
 d = i/4
 # define the bezier curve control points
 x1,y1, x2,y2, x3,y3, x4,y4 = d,1.5*i, 1.5*i,d, 3*i,d, 5.5*i-d,3*i-d
 # draw a figure enclosing the control points
 canvas.setFillColor(yellow)
 p = canvas.beginPath()
 p.moveTo(x1,y1)
 for (x,y) in [(x2,y2), (x3,y3), (x4,y4)]:
 p.lineTo(x,y)
 canvas.drawPath(p, fill=1, stroke=0)
 # draw the tangent lines
 canvas.setLineWidth(inch*0.1)
 canvas.setStrokeColor(green)
 canvas.line(x1,y1,x2,y2)
 canvas.setStrokeColor(red)
 canvas.line(x3,y3,x4,y4)
 # finally draw the curve
 canvas.setStrokeColor(black)
 canvas.bezier(x1,y1, x2,y2, x3,y3, x4,y4)

A Bezier curve is specified by four control points (x1,y1), (x2,y2), (x3,y3), (x4,y4). The curve
starts at (x1,y1) and ends at (x4,y4) and the line segment from (x1,y1) to (x2,y2) and the line
segment from (x3,y3) to (x4,y4) both form tangents to the curve. Furthermore the curve is entirely
contained in the convex figure with vertices at the control points.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 36

Figure A-24: basic bezier curves

The drawing above (the output of testbezier) shows a bezier curves, the tangent lines defined by the
control points and the convex figure with vertices at the control points.

Smoothly joining bezier curve sequences

It is often useful to join several bezier curves to form a single smooth curve. To construct a larger smooth
curve from several bezier curves make sure that the tangent lines to adjacent bezier curves that join at a
control point lie on the same line.

def bezier2(canvas):
 from reportlab.lib.colors import yellow, green, red, black
 from reportlab.lib.units import inch
 # make a sequence of control points
 xd,yd = 5.5*inch/2, 3*inch/2
 xc,yc = xd,yd
 dxdy = [(0,0.33), (0.33,0.33), (0.75,1), (0.875,0.875),
 (0.875,0.875), (1,0.75), (0.33,0.33), (0.33,0)]
 pointlist = []
 for xoffset in (1,-1):
 yoffset = xoffset
 for (dx,dy) in dxdy:
 px = xc + xd*xoffset*dx
 py = yc + yd*yoffset*dy
 pointlist.append((px,py))
 yoffset = -xoffset
 for (dy,dx) in dxdy:
 px = xc + xd*xoffset*dx
 py = yc + yd*yoffset*dy
 pointlist.append((px,py))
 # draw tangent lines and curves
 canvas.setLineWidth(inch*0.1)
 while pointlist:
 [(x1,y1),(x2,y2),(x3,y3),(x4,y4)] = pointlist[:4]
 del pointlist[:4]
 canvas.setLineWidth(inch*0.1)
 canvas.setStrokeColor(green)
 canvas.line(x1,y1,x2,y2)
 canvas.setStrokeColor(red)
 canvas.line(x3,y3,x4,y4)
 # finally draw the curve
 canvas.setStrokeColor(black)
 canvas.bezier(x1,y1, x2,y2, x3,y3, x4,y4)

The figure created by testbezier2 describes a smooth complex curve because adjacent tangent lines
"line up" as illustrated below.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 37

Figure A-25: bezier curves

2.15 Path object methods
Path objects build complex graphical figures by setting the "pen" or "brush" at a start point on the canvas and
drawing lines or curves to additional points on the canvas. Most operations apply paint on the canvas starting
at the end point of the last operation and leave the brush at a new end point.

pathobject.moveTo(x,y)

The moveTo method lifts the brush (ending any current sequence of lines or curves if there is one) and
replaces the brush at the new (x,y) location on the canvas to start a new path sequence.

pathobject.lineTo(x,y)

The lineTo method paints straight line segment from the current brush location to the new (x,y)
location.

pathobject.curveTo(x1, y1, x2, y2, x3, y3)

The curveTo method starts painting a Bezier curve beginning at the current brush location, using
(x1,y1), (x2,y2), and (x3,y3) as the other three control points, leaving the brush on (x3,y3).

pathobject.arc(x1,y1, x2,y2, startAng=0, extent=90)

pathobject.arcTo(x1,y1, x2,y2, startAng=0, extent=90)

The arc and arcTo methods paint partial ellipses. The arc method first "lifts the brush" and starts a
new shape sequence. The arcTo method joins the start of the partial ellipse to the current shape sequence
by line segment before drawing the partial ellipse. The points (x1,y1) and (x2,y2) define opposite
corner points of a rectangle enclosing the ellipse. The startAng is an angle (in degrees) specifying where
to begin the partial ellipse where the 0 angle is the midpoint of the right border of the enclosing rectangle
(when (x1,y1) is the lower left corner and (x2,y2) is the upper right corner). The extent is the
angle in degrees to traverse on the ellipse.

def arcs(canvas):
 from reportlab.lib.units import inch
 canvas.setLineWidth(4)
 canvas.setStrokeColorRGB(0.8, 1, 0.6)
 # draw rectangles enclosing the arcs
 canvas.rect(inch, inch, 1.5*inch, inch)
 canvas.rect(3*inch, inch, inch, 1.5*inch)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 38

 canvas.setStrokeColorRGB(0, 0.2, 0.4)
 canvas.setFillColorRGB(1, 0.6, 0.8)
 p = canvas.beginPath()
 p.moveTo(0.2*inch, 0.2*inch)
 p.arcTo(inch, inch, 2.5*inch,2*inch, startAng=-30, extent=135)
 p.arc(3*inch, inch, 4*inch, 2.5*inch, startAng=-45, extent=270)
 canvas.drawPath(p, fill=1, stroke=1)

The arcs function above exercises the two partial ellipse methods. It produces the following drawing.

Figure A-26: arcs in path objects

pathobject.rect(x, y, width, height)

The rect method draws a rectangle with lower left corner at (x,y) of the specified width and
height.

pathobject.ellipse(x, y, width, height)

The ellipse method draws an ellipse enclosed in the rectange with lower left corner at (x,y) of the
specified width and height.

pathobject.circle(x_cen, y_cen, r)

The circle method draws a circle centered at (x_cen, y_cen) with radius r.

def variousshapes(canvas):
 from reportlab.lib.units import inch
 inch = int(inch)
 canvas.setStrokeGray(0.5)
 canvas.grid(range(0,11*inch/2,inch/2), range(0,7*inch/2,inch/2))
 canvas.setLineWidth(4)
 canvas.setStrokeColorRGB(0, 0.2, 0.7)
 canvas.setFillColorRGB(1, 0.6, 0.8)
 p = canvas.beginPath()
 p.rect(0.5*inch, 0.5*inch, 0.5*inch, 2*inch)
 p.circle(2.75*inch, 1.5*inch, 0.3*inch)
 p.ellipse(3.5*inch, 0.5*inch, 1.2*inch, 2*inch)
 canvas.drawPath(p, fill=1, stroke=1)

The variousshapes function above shows a rectangle, circle and ellipse placed in a frame of reference
grid.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 39

Figure A-27: rectangles, circles, ellipses in path objects

pathobject.close()

The close method closes the current graphical figure by painting a line segment from the last point of the
figure to the starting point of the figure (the the most recent point where the brush was placed on the paper by
moveTo or arc or other placement operations).

def closingfigures(canvas):
 from reportlab.lib.units import inch
 h = inch/3.0; k = inch/2.0
 canvas.setStrokeColorRGB(0.2,0.3,0.5)
 canvas.setFillColorRGB(0.8,0.6,0.2)
 canvas.setLineWidth(4)
 p = canvas.beginPath()
 for i in (1,2,3,4):
 for j in (1,2):
 xc,yc = inch*i, inch*j
 p.moveTo(xc,yc)
 p.arcTo(xc-h, yc-k, xc+h, yc+k, startAng=0, extent=60*i)
 # close only the first one, not the second one
 if j==1:
 p.close()
 canvas.drawPath(p, fill=1, stroke=1)

The closingfigures function illustrates the effect of closing or not closing figures including a line
segment and a partial ellipse.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 40

Figure A-28: closing and not closing pathobject figures

Closing or not closing graphical figures effects only the stroked outline of a figure, not the filling of the
figure as illustrated above.

For a more extensive example of drawing using a path object examine the hand function.

def hand(canvas, debug=1, fill=0):
 (startx, starty) = (0,0)
 curves = [
 (0, 2), (0, 4), (0, 8), # back of hand
 (5, 8), (7,10), (7,14),
 (10,14), (10,13), (7.5, 8), # thumb
 (13, 8), (14, 8), (17, 8),
 (19, 8), (19, 6), (17, 6),
 (15, 6), (13, 6), (11, 6), # index, pointing
 (12, 6), (13, 6), (14, 6),
 (16, 6), (16, 4), (14, 4),
 (13, 4), (12, 4), (11, 4), # middle
 (11.5, 4), (12, 4), (13, 4),
 (15, 4), (15, 2), (13, 2),
 (12.5, 2), (11.5, 2), (11, 2), # ring
 (11.5, 2), (12, 2), (12.5, 2),
 (14, 2), (14, 0), (12.5, 0),
 (10, 0), (8, 0), (6, 0), # pinky, then close
]
 from reportlab.lib.units import inch
 if debug: canvas.setLineWidth(6)
 u = inch*0.2
 p = canvas.beginPath()
 p.moveTo(startx, starty)
 ccopy = list(curves)
 while ccopy:
 [(x1,y1), (x2,y2), (x3,y3)] = ccopy[:3]
 del ccopy[:3]
 p.curveTo(x1*u,y1*u,x2*u,y2*u,x3*u,y3*u)
 p.close()
 canvas.drawPath(p, fill=fill)
 if debug:
 from reportlab.lib.colors import red, green
 (lastx, lasty) = (startx, starty)
 ccopy = list(curves)
 while ccopy:
 [(x1,y1), (x2,y2), (x3,y3)] = ccopy[:3]
 del ccopy[:3]
 canvas.setStrokeColor(red)
 canvas.line(lastx*u,lasty*u, x1*u,y1*u)
 canvas.setStrokeColor(green)
 canvas.line(x2*u,y2*u, x3*u,y3*u)
 (lastx,lasty) = (x3,y3)

User Guide Chapter 2 Graphics and Text with pdfgen

Page 41

In debug mode (the default) the hand function shows the tangent line segments to the bezier curves used to
compose the figure. Note that where the segments line up the curves join smoothly, but where they do not
line up the curves show a "sharp edge".

Figure A-29: an outline of a hand using bezier curves

Used in non-debug mode the hand function only shows the Bezier curves. With the fill parameter set
the figure is filled using the current fill color.

def hand2(canvas):
 canvas.translate(20,10)
 canvas.setLineWidth(3)
 canvas.setFillColorRGB(0.1, 0.3, 0.9)
 canvas.setStrokeGray(0.5)
 hand(canvas, debug=0, fill=1)

Note that the "stroking" of the border draws over the interior fill where they overlap.

Figure A-30: the finished hand, filled

User Guide Chapter 2 Graphics and Text with pdfgen

Page 42

2.16 Further Reading: The ReportLab Graphics Library
So far the graphics we have seen was created on a fairly low level. It should be noted, though, that there is
another way of creating much more sophisticated graphics using the emerging dedicated high-level
ReportLab Graphics Library.

It can be used to produce high-quality, platform-independant, reusable graphics for different output formats
(vector and bitmap) like PDF, EPS and soon others like SVG.

A thorough description of its philsophy and features is beyond the scope of this general user guide and the
reader is recommended to continue with the "ReportLab Graphics Guide". There she will find information
about the existing components and how to create customized ones.

Also, the graphics guide contains a presentation of an emerging charting package and its components (labels,
axes, legends and different types of charts like bar, line and pie charts) that builds directly on the graphics
library.

User Guide Chapter 2 Graphics and Text with pdfgen

Page 43

Chapter 3 Fonts and encodings
This chapter covers fonts, encodings and Asian language capabilities. If you are purely concerned with
generating PDFs for Western European languages, you can just read the "Unicode is the default" section
below and skip the rest on a first reading. We expect this section to grow considerably over time. We hope
that Open Source will enable us to give better support for more of the world's languages than other tools, and
we welcome feedback and help in this area.

3.1 Unicode and UTF8 are the default input encodings
Starting with reportlab Version 2.0 (May 2006), all text input you provide to our APIs should be in UTF8 or
as Python Unicode objects. This applies to arguments to canvas.drawString and related APIs, table cell
content, drawing object parameters, and paragraph source text.

We considered making the input encoding configurable or even locale-dependent, but decided that "explicit
is better than implicit".

This simplifies many things we used to do previously regarding greek letters, symbols and so on. To display
any character, find out its unicode code point, and make sure the font you are using is able to display it.

If you are adapting a ReportLab 1.x application, or reading data from another source which contains
single-byte data (e.g. latin-1 or WinAnsi), you need to do a conversion into Unicode. The Python codecs
package now includes converters for all the common encodings, including Asian ones.

If your data is not encoded as UTF8, you will get a UnicodeDecodeError as soon as you feed in a non-ASCII
character. For example, this snippet below is attempting to read in and print a series of names, including one
with a French accent: Marc-André Lemburg. The standard error is quite helpful and tells you what
character it doesn't like:

>>> from reportlab.pdfgen.canvas import Canvas
>>> c = Canvas('temp.pdf')
>>> y = 700
>>> for line in file('latin_python_gurus.txt','r'):
... c.drawString(100, y, line.strip())
...
Traceback (most recent call last):
...
UnicodeDecodeError: 'utf8' codec can't decode bytes in position 9-11: invalid data
-->é L<--emburg
>>>

The simplest fix is just to convert your data to unicode, saying which encoding it comes from, like this:

>>> for line in file('latin_input.txt','r'):
... uniLine = unicode(line, 'latin-1')
... c.drawString(100, y, uniLine.strip())
>>>
>>> c.save()

3.2 Changing the built-in fonts output encoding
There are still a number of places in the code, including the rl_config defaultEncoding parameter, and
arguments passed to various Font constructors. These generally relate to the OUTPUT encoding used when
we write data in the font file. This affects which characters are actually available in the font if you are using
Type 1 fonts, since only 256 glyphs can be available at one time. Unless you have a very specific need for
MacRoman or MacExpert encoding characters, we advise you to ignore this. By default the standard fonts
(Helvetica, Courier, Times Roman) will offer the glyphs available in Latin-1. If you try to print a non-Latin-1
character using the built-in Helvetica, you'll see a rectangle or blob.

User Guide Chapter 3 Fonts and encodings

Page 44

3.3 Using non-standard Type 1 fonts
As discussed in the previous chapter, every copy of Acrobat Reader comes with 14 standard fonts built in.
Therefore, the ReportLab PDF Library only needs to refer to these by name. If you want to use other fonts,
they must be available to your code and will be embedded in the PDF document.

You can use the mechanism described below to include arbitrary fonts in your documents. Just van Rossum
has kindly donated a Type 1 font named LettErrorRobot-Chrome which we may use for testing and/or
documenting purposes (and which you may use as well). It comes bundled with the ReportLab distribution in
the directory reportlab/fonts.

Right now font-embedding relies on font description files in the Adobe AFM ('Adobe Font Metrics') and PFB
('Printer Font Binary') format. The former is an ASCII file and contains information about the characters
('glyphs') in the font such as height, width, bounding box info and other 'metrics', while the latter is a binary
file that describes the shapes of the font. The reportlab/fonts directory contains the files
'LeERC___.AFM' and 'LeERC___.PFB' that are used as an example font.

In the following example locate the folder containing the test font and register it for future use with the
pdfmetrics module, after which we can use it like any other standard font.

import os
import reportlab
folder = os.path.dirname(reportlab.__file__) + os.sep + 'fonts'
afmFile = os.path.join(folder, 'LeERC___.AFM')
pfbFile = os.path.join(folder, 'LeERC___.PFB')

from reportlab.pdfbase import pdfmetrics
justFace = pdfmetrics.EmbeddedType1Face(afmFile, pfbFile)
faceName = 'LettErrorRobot-Chrome' # pulled from AFM file
pdfmetrics.registerTypeFace(justFace)
justFont = pdfmetrics.Font('LettErrorRobot-Chrome',
 faceName,
 'WinAnsiEncoding')
pdfmetrics.registerFont(justFont)

canvas.setFont('LettErrorRobot-Chrome', 32)
canvas.drawString(10, 150, 'This should be in')
canvas.drawString(10, 100, 'LettErrorRobot-Chrome')

Note that the argument "WinAnsiEncoding" has nothing to do with the input; it's to say which set of
characters within the font file will be active and available.

Figure A-31: Using a very non-standard font

This should be in

LettErrorRobot-Chrome

User Guide Chapter 3 Fonts and encodings

Page 45

The font's facename comes from the AFM file's FontName field. In the example above we knew the name
in advance, but quite often the names of font description files are pretty cryptic and then you might want to
retrieve the name from an AFM file automatically. When lacking a more sophisticated method you can use
some code as simple as this:

class FontNameNotFoundError(Exception):
 pass

def findFontName(path):
 "Extract a font name from an AFM file."

 f = open(path)

 found = 0
 while not found:
 line = f.readline()[:-1]
 if not found and line[:16] == 'StartCharMetrics':
 raise FontNameNotFoundError, path
 if line[:8] == 'FontName':
 fontName = line[9:]
 found = 1

 return fontName

In the LettErrorRobot-Chrome example we explicitely specified the place of the font description files to be
loaded. In general, you'll prefer to store your fonts in some canonic locations and make the embedding
mechanism aware of them. Using the same configuration mechanism we've already seen at the beginning of
this section we can indicate a default search path for Type-1 fonts.

Unfortunately, there is no reliable standard yet for such locations (not even on the same platform) and, hence,
you might have to edit the file reportlab/rl_config.py to modify the value of the
T1SearchPath identifier to contain additional directories. Our own recommendation is to use the
reportlab/fonts folder in development; and to have any needed fonts as packaged parts of your
application in any kind of controlled server deployment. This insulates you from fonts being installed and
uninstalled by other software or system administrator.

Warnings about missing glyphs

If you specify an encoding, it is generally assumed that the font designer has provided all the needed glyphs.
However, this is not always true. In the case of our example font, the letters of the alphabet are present, but
many symbols and accents are missing. The default behaviour is for the font to print a 'notdef' character -
typically a blob, dot or space - when passed a character it cannot draw. However, you can ask the library to
warn you instead; the code below (executed before loading a font) will cause warnings to be generated for
any glyphs not in the font when you register it.

import reportlab.rl_config
reportlab.rl_config.warnOnMissingFontGlyphs = 0

3.4 Standard Single-Byte Font Encodings
This section shows you the glyphs available in the common encodings.

The code chart below shows the characters in the WinAnsiEncoding. This is the standard encoding on
Windows and many Unix systems in America and Western Europe. It is also knows as Code Page 1252, and
is practically identical to ISO-Latin-1 (it contains one or two extra characters). This is the default encoding
used by the Reportlab PDF Library. It was generated from a standard routine in reportlab/lib,
codecharts.py, which can be used to display the contents of fonts. The index numbers along the edges
are in hex.

User Guide Chapter 3 Fonts and encodings

Page 46

Figure A-32: WinAnsi Encoding

00

20

40

60

80

A0

C0

E0

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

 ! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _
` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~ •
€ • ‚ ƒ „ … † ‡ ˆ ‰ Š ‹ Œ • Ž • • ‘ ’ “ ” • – — ˜ ™ š › œ • ž Ÿ
 ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ - ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿
À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
à á â ã ä å æ ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

The code chart below shows the characters in the MacRomanEncoding. as it sounds, this is the standard
encoding on Macintosh computers in America and Western Europe. As usual with non-unicode encodings,
the first 128 code points (top 4 rows in this case) are the ASCII standard and agree with the WinAnsi code
chart above; but the bottom 4 rows differ.

Figure A-33: MacRoman Encoding

00

20

40

60

80

A0

C0

E0

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

 ! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _
` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~ ■

Ä Å Ç É Ñ Ö Ü á à â ä ã å ç é è ê ë í ì î ï ñ ó ò ô ö õ ú ù û ü
† ° ¢ £ § • ¶ ß ® © ™ ´ ¨ ≠ Æ Ø ∞ ± ≤ ≥ ¥ µ ∂ ∑ ∏ π ∫ ª º Ω æ ø
¿ ¡ ¬ √ ƒ ≈ ∆ « » … ■ À Ã Õ Œ œ – — “ ” ‘ ’ ÷ ◊ ÿ Ÿ ⁄ ¤ ‹ › fi fl
‡ · ‚ „ ‰ Â Ê Á Ë È Í Î Ï Ì Ó Ô ■ Ò Ú Û Ù ı ˆ ˜ ¯ ˘ ˙ ˚ ¸ ˝ ˛ ˇ

These two encodings are available for the standard fonts (Helvetica, Times-Roman and Courier and their
variants) and will be available for most commercial fonts including those from Adobe. However, some fonts
contain non- text glyphs and the concept does not really apply. For example, ZapfDingbats and Symbol can
each be treated as having their own encoding.

Figure A-34: ZapfDingbats and its one and only encoding

00

20

40

60

80

A0

C0

E0

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

 ✁ ✂ ✃ ✄ ☎ ✆ ✇ ✈ ✉ ☛ ☞ ✌ ✍ ✎ ✏ ✐ ✑ ✒ ✓ ✔ ✕ ✖ ✗ ✘ ✙ ✚ ✛ ✜ ✝ ✞ ✟

✠ ✡ ✢ ✣ ✤ ✥ ✦ ✧ ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯ ✰ ✱ ✲ ✳ ✴ ✵ ✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✿

❀ ❁ ❂ ❃ ❄ ❅ ❆ ❇ ❈ ❉ ❊ ❋ ● ❍ ■ ❏ ❐ ❑ ❒ ▲ ▼ ◆ ❖ ◗ ❘ ❙ ❚ ❛ ❜ ❝ ❞ ■

� � � � � � � � � � � � � � ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■ ❡ ❢ ❣ ❤ ❥ ❦ ❧ ♣ ♦ ♥ ♠ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷ ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ ➊ ➋ ➌ ➍ ➎ ➏ ➐ ➑ ➒ ➓ ➔ → ↔ ↕ ➘ ➙ ➚ ➛ ➜ ➝ ➞ ➟

➠ ➡ ➢ ➣ ➤ ➥ ➦ ➧ ➨ ➩ ➪ ➫ ➬ ➭ ➮ ➯ ■ ➱ ➲ ➳ ➴ ➵ ➶ ➷ ➸ ➹ ➺ ➻ ➼ ➽ ➾ ■

Figure A-35: Symbol and its one and only encoding

00

20

40

60

80

A0

C0

E0

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

 ! ∀ # ∃ % & ∋ () ∗ + , − . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
≅ Α Β Χ ∆ Ε Φ Γ Η Ι ϑ Κ Λ Μ Ν Ο Π Θ Ρ Σ Τ Υ ς Ω Ξ Ψ Ζ [∴] ⊥ _
 α β χ δ ε φ γ η ι ϕ κ λ µ ν ο π θ ρ σ τ υ ϖ ω ξ ψ ζ { | } ∼ ■

■ ■

€ ϒ ′ ≤ ⁄ ∞ ƒ ♣ ♦ ♥ ♠ ↔ ← ↑ → ↓ ° ± ″ ≥ × ∝ ∂ • ÷ ≠ ≡ ≈ …   ↵
ℵ ℑ ℜ ℘ ⊗ ⊕ ∅ ∩ ∪ ⊃ ⊇ ⊄ ⊂ ⊆ ∈ ∉ ∠ ∇    ∏ √ ⋅ ¬ ∧ ∨ ⇔ ⇐ ⇑ ⇒ ⇓
◊ 〈    ∑           ■ 〉 ∫ ⌠  ⌡          ■

User Guide Chapter 3 Fonts and encodings

Page 47

3.5 TrueType Font Support
Marius Gedminas (mgedmin@delfi.lt) with the help of Viktorija Zaksiene (vika@pov.lt) have
contributed support for embedded TrueType fonts. TrueType fonts work in Unicode/UTF8 and are not
limited to 256 characters.

We use reportlab.pdfbase.ttfonts.TTFont to create a true type font object and register using
reportlab.pdfbase.pdfmetrics.registerFont. In pdfgen drawing directly to the canvas we
can do

we know some glyphs are missing, suppress warnings
import reportlab.rl_config
reportlab.rl_config.warnOnMissingFontGlyphs = 0

from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
pdfmetrics.registerFont(TTFont('Rina', 'rina.ttf'))
canvas.setFont(Rina, 32)
canvas.drawString(10, 150, "Some text encoded in UTF-8")
canvas.drawString(10, 100, "In the Rina TT Font!")

Figure A-36: Using a the Rina TrueType Font

Some UTF-8 text encoded

in the Rina TT Font!

In the above example the true type font object is created using

 TTFont(name,filename)

so that the ReportLab internal name is given by the first argument and the second argument is a string(or file
like object) denoting the font's TTF file. In Marius' original patch the filename was supposed to be exactly
correct, but we have modified things so that if the filename is relative then a search for the corresponding file
is done in the current directory and then in directories specified by
reportlab.rl_config.TTFSearchpath!

Before using the TT Fonts in Platypus we should add a mapping from the family name to the individual font
names that describe the behaviour under the and attributes.

from reportlab.lib.fonts import addMapping
addMapping('Rina', 0, 0, 'Rina') #normal
addMapping('Rina', 0, 1, 'Rina') #italic
addMapping('Rina', 1, 0, 'Rina') #bold
addMapping('Rina', 1, 1, 'Rina') #italic and bold

We only have a Rina regular font, no bold or italic, so we must map all to the same internal fontname.
and <i> tags may now be used safely, but have no effect. After registering and mapping the Rina font as
above we can use paragraph text like

User Guide Chapter 3 Fonts and encodings

Page 48

Figure A-37: Using TTF fonts in paragraphs

<font name="Times-Roman"
size="14">This is in
Times-Roman <font
name="Rina" color="magenta"
size="14">and this is in magenta
Rina!

This is in Times-Roman
and this is in magenta
Rina!

3.6 Asian Font Support
The Reportlab PDF Library aims to expose full support for Asian fonts. PDF is the first really portable
solution for Asian text handling. There are two main approaches for this: Adobe's Asian Language Packs, or
TrueType fonts.

Asian Language Packs

This approach offers the best performance since nothing needs embedding in the PDF file; as with the
standard fonts, everything is on the reader.

Adobe makes available add-ons for each main language. In Adobe Reader 6.0 and 7.0, you will be prompted
to download and install these as soon as you try to open a document using them. In earlier versions, you
would see an error message on opening an Asian document and had to know what to do.

Japanese, Traditional Chinese (Taiwan/Hong Kong), Simplified Chinese (mainland China) and Korean are
all supported and our software knows about the following fonts:

• chs = Chinese Simplified (mainland): 'STSong-Light'
• cht = Chinese Traditional (Taiwan): 'MSung-Light', 'MHei-Medium'
• kor = Korean: 'HYSMyeongJoStd-Medium','HYGothic-Medium'
• jpn = Japanese: 'HeiseiMin-W3', 'HeiseiKakuGo-W5'

Since many users will not have the font packs installed, we have included a rather grainy bitmap of some
Japanese characters. We will discuss below what is needed to generate them.

Prior to Version 2.0, you had to specify one of many native encodings when registering a CID Font. In
version 2.0 you should a new UnicodeCIDFont class.

from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.cidfonts import UnicodeCIDFont
pdfmetrics.registerFont(UnicodeCIDFont('HeiseiMin-W3'))
canvas.setFont('HeiseiMin-W3', 16)

the two unicode characters below are "Tokyo"
msg = u'\u6771\u4EAC : Unicode font, unicode input'
canvas.drawString(100, 675, msg)

The old coding style with explicit encodings should still work, but is now only relevant if you need to
construct vertical text. We aim to add more readable options for horizontal and vertical text to the
UnicodeCIDFont constructor in future. The following four test scripts generate samples in the corresponding
languages:

reportlab/test/test_multibyte_jpn.py
reportlab/test/test_multibyte_kor.py

User Guide Chapter 3 Fonts and encodings

Page 49

reportlab/test/test_multibyte_chs.py
reportlab/test/test_multibyte_cht.py

In previous versions of the ReportLab PDF Library, we had to make use of Adobe's CMap files (located near
Acrobat Reader if the Asian Language packs were installed). Now that we only have one encoding to deal
with, the character width data is embedded in the package, and CMap files are not needed for generation. The
CMap search path in rl_config.py is now deprecated and has no effect if you restrict yourself to
UnicodeCIDFont.

TrueType fonts with Asian characters

This is the easy way to do it. No special handling at all is needed to work with Asian TrueType fonts.
Windows users who have installed, for example, Japanese as an option in Control Panel, will have a font
"msmincho.ttf" which can be used. However, be aware that it takes time to parse the fonts, and that quite
large subsets may need to be embedded in your PDFs. We can also now parse files ending in .ttc, which are a
slight variation of .ttf.

To Do

We expect to be developing this area of the package for some time.accept2dyear Here is an outline of the
main priorities. We welcome help!

• Ensure that we have accurate character metrics for all encodings in horizontal and vertical
writing.

• Add options to UnicodeCIDFont to allow vertical and proportional variants where the font
permits it.

• Improve the word wrapping code in paragraphs and allow vertical writing.

3.7 RenderPM tests
This may also be the best place to mention the test function of reportlab/graphics/renderPM.py,
which can be considered the cannonical place for tests which exercise renderPM (the "PixMap Renderer", as
opposed to renderPDF, renderPS or renderSVG).

If you run this from the command line, you should see lots of output like the following.

C:\code\reportlab\graphics>renderPM.py
wrote pmout\renderPM0.gif
wrote pmout\renderPM0.tif
wrote pmout\renderPM0.png
wrote pmout\renderPM0.jpg
wrote pmout\renderPM0.pct
...
wrote pmout\renderPM12.gif
wrote pmout\renderPM12.tif
wrote pmout\renderPM12.png
wrote pmout\renderPM12.jpg
wrote pmout\renderPM12.pct
wrote pmout\index.html

This runs a number of tests progressing from a "Hello World" test, through various tests of Lines; text strings
in a number of sizes, fonts, colours and alignments; the basic shapes; translated and rotated groups; scaled
coordinates; rotated strings; nested groups; anchoring and non-standard fonts.

It creates a subdirectory called pmout, writes the image files into it, and writes an index.html page
which makes it easy to refer to all the results.

The font-related tests which you may wish to look at are test #11 ('Text strings in a non-standard font') and
test #12 ('Test Various Fonts').

User Guide Chapter 3 Fonts and encodings

Page 50

Chapter 4 Exposing PDF Special Capabilities
PDF provides a number of features to make electronic document viewing more efficient and comfortable,
and our library exposes a number of these.

4.1 Forms
The Form feature lets you create a block of graphics and text once near the start of a PDF file, and then
simply refer to it on subsequent pages. If you are dealing with a run of 5000 repetitive business forms - for
example, one-page invoices or payslips - you only need to store the backdrop once and simply draw the
changing text on each page. Used correctly, forms can dramatically cut file size and production time, and
apparently even speed things up on the printer.

Forms do not need to refer to a whole page; anything which might be repeated often should be placed in a
form.

The example below shows the basic sequence used. A real program would probably define the forms up front
and refer to them from another location.

def forms(canvas):
 #first create a form...
 canvas.beginForm("SpumoniForm")
 #re-use some drawing functions from earlier
 spumoni(canvas)
 canvas.endForm()

 #then draw it
 canvas.doForm("SpumoniForm")

4.2 Links and Destinations
PDF supports internal hyperlinks. There is a very wide range of link types, destination types and events
which can be triggered by a click. At the moment we just support the basic ability to jump from one part of a
document to another, and to control the zoom level of the window after the jump. The bookmarkPage method
defines a destination that is the endpoint of a jump.

 canvas.bookmarkPage(name,
 fitType="Fit",
 left=None,
 top=None,
 bottom=None,
 right=None,
 zoom=None
)

By default the bookmarkPage method defines the page itself as the destination. After jumping to an
endpoint defined by bookmarkPage, the PDF browser will display the whole page, scaling it to fit the screen:

canvas.bookmarkPage(name)

The bookmarkPage method can be instructed to display the page in a number of different ways by
providing a fitType parameter.

fitType Parameters Required Meaning

Fit Entire page fits in window (the default)

FitH top Top coord at top of window, width scaled to fit

FitV left Left coord at left of window, height scaled to fit

FitR left bottom right top Scale window to fit the specified rectangle

XYZ left top zoom
Fine grained control. If you omit a parameter
the PDF browser interprets it as "leave as is"

User Guide Chapter 4 Exposing PDF Special Capabilities

Page 51

Table 4-1 - Required attributes for different fit types

Note : fitType settings are case-sensitive so fitType="FIT" is invalid$

Sometimes you want the destination of a jump to be some part of a page. The FitR fitType allows you to
identify a particular rectangle, scaling the area to fit the entire page.

To set the display to a particular x and y coordinate of the page and to control the zoom directly use
fitType="XYZ".

canvas.bookmarkPage('my_bookmark',fitType="XYZ",left=0,top=200)

This destination is at the leftmost of the page with the top of the screen at position 200. Because zoom was
not set the zoom remains at whatever the user had it set to.

canvas.bookmarkPage('my_bookmark',fitType="XYZ",left=0,top=200,zoom=2)

This time zoom is set to expand the page 2X its normal size.

Note : Both XYZ and FitR fitTypes require that their positional parameters (top, bottom, left,
right) be specified in terms of the default user space. They ignore any geometric transform in effect in the
canvas graphic state.

NOTE Note: Two previous bookmark methods are supported but deprecated now that bookmarkPage is so general.
These are bookmarkHorizontalAbsolute and bookmarkHorizontal.

Defining internal links

 canvas.linkAbsolute(contents, destinationname, Rect=None, addtopage=1, name=None, **kw)

The linkAbsolute method defines a starting point for a jump. When the user is browsing the generated
document using a dynamic viewer (such as Acrobat Reader) when the mouse is clicked when the pointer is
within the rectangle specified by Rect the viewer will jump to the endpoint associated with
destinationname. As in the case with bookmarkHorizontalAbsolute the rectangle Rect must
be specified in terms of the default user space. The contents parameter specifies a chunk of text which
displays in the viewer if the user left-clicks on the region.

The rectangle Rect must be specified in terms of a tuple (x1,y1,x2,y2) identifying the lower left and
upper right points of the rectangle in default user space.

For example the code

 canvas.bookmarkPage("Meaning_of_life")

defines a location as the whole of the current page with the identifier Meaning_of_life. To create a
rectangular link to it while drawing a possibly different page, we would use this code:

 canvas.linkAbsolute("Find the Meaning of Life", "Meaning_of_life",
 (inch, inch, 6*inch, 2*inch))

By default during interactive viewing a rectangle appears around the link. Use the keyword argument
Border='[0 0 0]' to suppress the visible rectangle around the during viewing link. For example

 canvas.linkAbsolute("Meaning of Life", "Meaning_of_life",
 (inch, inch, 6*inch, 2*inch), Border='[0 0 0]')

4.3 Outline Trees
Acrobat Reader has a navigation page which can hold a document outline; it should normally be visible when
you open this guide. We provide some simple methods to add outline entries. Typically, a program to make a
document (such as this user guide) will call the method canvas.addOutlineEntry(self, title,
key, level=0, closed=None) as it reaches each heading in the document.

User Guide Chapter 4 Exposing PDF Special Capabilities

Page 52

title is the caption which will be displayed in the left pane. The key must be a string which is unique
within the document and which names a bookmark, as with the hyperlinks. The level is zero - the
uppermost level - unless otherwise specified, and it is an error to go down more than one level at a time (for
example to follow a level 0 heading by a level 2 heading). Finally, the closed argument specifies whether
the node in the outline pane is closed or opened by default.

The snippet below is taken from the document template that formats this user guide. A central processor
looks at each paragraph in turn, and makes a new outline entry when a new chapter occurs, taking the chapter
heading text as the caption text. The key is obtained from the chapter number (not shown here), so Chapter 2
has the key 'ch2'. The bookmark to which the outline entry points aims at the whole page, but it could as
easily have been an individual paragraph.

#abridged code from our document template
if paragraph.style == 'Heading1':
 self.chapter = paragraph.getPlainText()
 key = 'ch%d' % self.chapterNo
 self.canv.bookmarkPage(key)
 self.canv.addOutlineEntry(paragraph.getPlainText(),
 key, 0, 0)

4.4 Page Transition Effects

 canvas.setPageTransition(self, effectname=None, duration=1,
 direction=0,dimension='H',motion='I')

The setPageTransition method specifies how one page will be replaced with the next. By setting the
page transition effect to "dissolve" for example the current page will appear to melt away when it is replaced
by the next page during interactive viewing. These effects are useful in spicing up slide presentations, among
other places. Please see the reference manual for more detail on how to use this method.

4.5 Internal File Annotations

 canvas.setAuthor(name)
 canvas.setTitle(title)
 canvas.setSubject(subj)

These methods have no automatically seen visible effect on the document. They add internal annotations to
the document. These annotations can be viewed using the "Document Info" menu item of the browser and
they also can be used as a simple standard way of providing basic information about the document to
archiving software which need not parse the entire file. To find the annotations view the *.pdf output file
using a standard text editor (such as notepad on MS/Windows or vi or emacs on unix) and look for
the string /Author in the file contents.

def annotations(canvas):
 from reportlab.lib.units import inch
 canvas.drawString(inch, 2.5*inch,
 "setAuthor, setTitle, setSubject have no visible effect")
 canvas.drawString(inch, inch, "But if you are viewing this document dynamically")
 canvas.drawString(inch, 0.5*inch, "please look at File/Document Info")
 canvas.setAuthor("the ReportLab Team")
 canvas.setTitle("ReportLab PDF Generation User Guide")
 canvas.setSubject("How to Generate PDF files using the ReportLab modules")

If you want the subject, title, and author to automatically display in the document when viewed and printed
you must paint them onto the document like any other text.

User Guide Chapter 4 Exposing PDF Special Capabilities

Page 53

Figure A-38: Setting document internal annotations

setAuthor, setTitle, setSubject have no visible effect

But if you are viewing this document dynamically

please look at File/Document Info

User Guide Chapter 4 Exposing PDF Special Capabilities

Page 54

Chapter 5 PLATYPUS - Page Layout and Typography
Using Scripts

5.1 Design Goals
Platypus stands for "Page Layout and Typography Using Scripts". It is a high level page layout library which
lets you programmatically create complex documents with a minimum of effort.

The design of Platypus seeks to separate "high level" layout decisions from the document content as much as
possible. Thus, for example, paragraphs are constructed using paragraph styles and pages are constructed
using page templates with the intention that hundreds of documents with thousands of pages can be
reformatted to different style specifications with the modifications of a few lines in a single shared file which
contains the paragraph styles and page layout specifications.

The overall design of Platypus can be thought of has having several layers, top down, these are

DocTemplates the outermost container for the document;

PageTemplates specifications for layouts of pages of various kinds;

Frames specifications of regions in pages that can contain flowing text or graphics.

Flowables text or graphic elements that should be "flowed into the document (i.e. things like images,
paragraphs and tables, but not things like page footers or fixed page graphics).

pdfgen.Canvas the lowest level which ultimately receives the painting of the document from the other
layers.

Figure A-39: Illustration of DocTemplate structure

DocTemplate

PageTemplate

two column

PageTemplate

chapter page

PageTemplate

title page

le
ft

F
ra

m
e

rig
ht

 F
ra

m
e

flowable 157

flowable 156

flowable 155 First Flowable

Chapter 6: Lubricants
College Life

The illustration above graphically illustrates the concepts of DocTemplates, PageTemplates and
Flowables. It is deceptive, however, because each of the PageTemplates actually may specify the
format for any number of pages (not just one as might be inferred from the diagram).

DocTemplates contain one or more PageTemplates each of which contain one or more Frames.
Flowables are things which can be flowed into a Frame e.g. a Paragraph or a Table.

To use platypus you create a document from a DocTemplate class and pass a list of Flowables to its
build method. The document build method knows how to process the list of flowables into something
reasonable.

User Guide Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts

Page 55

Internally the DocTemplate class implements page layout and formatting using various events. Each of
the events has a corresponding handler method called handle_XXX where XXX is the event name. A
typical event is frameBegin which occurs when the machinery begins to use a frame for the first time.

A Platypus story consists of a sequence of basic elements called Flowables and these elements drive the
data driven Platypus formatting engine. To modify the behavior of the engine a special kind of flowable,
ActionFlowables, tell the layout engine to, for example, skip to the next column or change to another
PageTemplate.

5.2 Getting started
Consider the following code sequence which provides a very simple "hello world" example for Platypus.

from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.rl_config import defaultPageSize
from reportlab.lib.units import inch
PAGE_HEIGHT=defaultPageSize[1]; PAGE_WIDTH=defaultPageSize[0]
styles = getSampleStyleSheet()

First we import some constructors, some paragraph styles and other conveniences from other modules.

Title = "Hello world"
pageinfo = "platypus example"
def myFirstPage(canvas, doc):
 canvas.saveState()
 canvas.setFont('Times-Bold',16)
 canvas.drawCentredString(PAGE_WIDTH/2.0, PAGE_HEIGHT-108, Title)
 canvas.setFont('Times-Roman',9)
 canvas.drawString(inch, 0.75 * inch, "First Page / %s" % pageinfo)
 canvas.restoreState()

We define the fixed features of the first page of the document with the function above.

def myLaterPages(canvas, doc):
 canvas.saveState()
 canvas.setFont('Times-Roman',9)
 canvas.drawString(inch, 0.75 * inch, "Page %d %s" % (doc.page, pageinfo))
 canvas.restoreState()

Since we want pages after the first to look different from the first we define an alternate layout for the fixed
features of the other pages. Note that the two functions above use the pdfgen level canvas operations to
paint the annotations for the pages.

def go():
 doc = SimpleDocTemplate("phello.pdf")
 Story = [Spacer(1,2*inch)]
 style = styles["Normal"]
 for i in range(100):
 bogustext = ("This is Paragraph number %s. " % i) *20
 p = Paragraph(bogustext, style)
 Story.append(p)
 Story.append(Spacer(1,0.2*inch))
 doc.build(Story, onFirstPage=myFirstPage, onLaterPages=myLaterPages)

Finally, we create a story and build the document. Note that we are using a "canned" document template here
which comes pre-built with page templates. We are also using a pre-built paragraph style. We are only using
two types of flowables here -- Spacers and Paragraphs. The first Spacer ensures that the
Paragraphs skip past the title string.

To see the output of this example program run the module docs/userguide/examples.py (from the
ReportLab docs distribution) as a "top level script". The script interpretation python examples.py
will generate the Platypus output phello.pdf.

User Guide Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts

Page 56

5.3 Flowables
Flowables are things which can be drawn and which have wrap, draw and perhaps split methods.
Flowable is an abstract base class for things to be drawn and an instance knows its size and draws in its
own coordinate system (this requires the base API to provide an absolute coordinate system when the
Flowable.draw method is called). To get an instance use f=Flowable().

It should be noted that the Flowable class is an abstract class and is normally only used as a base class.

To illustrate the general way in which Flowables are used we show how a derived class Paragraph is
used and drawn on a canvas. Paragraphs are so important they will get a whole chapter to themselves.

 from reportlab.lib.styles import getSampleStyleSheet
 from reportlab.platypus import Paragraph
 from reportlab.pdfgen.canvas import Canvas
 styleSheet = getSampleStyleSheet()
 style = styleSheet['BodyText']
 P=Paragraph('This is a very silly example',style)
 canv = Canvas('doc.pdf')
 aW = 460 # available width and height
 aH = 800
 w,h = P.wrap(aW, aH) # find required space
 if w<=aW and h<=aH:
 P.drawOn(canv,0,aH)
 aH = aH - h # reduce the available height
 canv.save()
 else:
 raise ValueError, "Not enough room"

Flowable User Methods

 Flowable.draw()

This will be called to ask the flowable to actually render itself. The Flowable class does not implement
draw. The calling code should ensure that the flowable has an attribute canv which is the
pdfgen.Canvas which should be drawn to an that the Canvas is in an appropriate state (as regards
translations rotations, etc). Normally this method will only be called internally by the drawOn method.
Derived classes must implement this method.

 Flowable.drawOn(canvas,x,y)

This is the method which controlling programs use to render the flowable to a particular canvas. It handles
the translation to the canvas coordinate (x,y) and ensuring that the flowable has a canv attribute so that the
draw method (which is not implemented in the base class) can render in an absolute coordinate frame.

 Flowable.wrap(availWidth, availHeight)

This will be called by the enclosing frame before objects are asked their size, drawn or whatever. It returns
the size actually used.

 Flowable.split(self, availWidth, availheight):

This will be called by more sophisticated frames when wrap fails. Stupid flowables should return [] meaning
that they are unable to split. Clever flowables should split themselves and return a list of flowables. It is up to
the client code to ensure that repeated attempts to split are avoided. If the space is sufficient the split method
should return [self]. Otherwise the flowable should rearrange itself and return a list [f0,...] of flowables
which will be considered in order. The implemented split method should avoid changing self as this will
allow sophisticated layout mechanisms to do multiple passes over a list of flowables.

5.4 Guidelines for flowable positioning
Two methods, which by default return zero, provide guidance on vertical spacing of flowables:

 Flowable.getSpaceAfter(self):

User Guide Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts

Page 57

 Flowable.getSpaceBefore(self):

These methods return how much space should follow or precede the flowable. The space doesn't belong to
the flowable itself i.e. the flowable's draw method shouldn't consider it when rendering. Controlling
programs will use the values returned in determining how much space is required by a particular flowable in
context.

All flowables have an hAlign property: ('LEFT', 'RIGHT', 'CENTER' or 'CENTRE'). For
paragraphs, which fill the full width of the frame, this has no effect. For tables, images or other objects which
are less than the width of the frame, this determines their horizontal placement.

The chapters which follow will cover the most important specific types of flowables: Paragraphs and Tables.

5.5 Frames
Frames are active containers which are themselves contained in PageTemplates. Frames have a
location and size and maintain a concept of remaining drawable space. The command

 Frame(x1, y1, width,height, leftPadding=6, bottomPadding=6,
 rightPadding=6, topPadding=6, id=None, showBoundary=0)

creates a Frame instance with lower left hand corner at coordinate (x1,y1) (relative to the canvas at use
time) and with dimensions width x height. The Padding arguments are positive quantities used to
reduce the space available for drawing. The id argument is an identifier for use at runtime e.g. 'LeftColumn'
or 'RightColumn' etc. If the showBoundary argument is non-zero then the boundary of the frame will get
drawn at run time (this is useful sometimes).

Frame User Methods

 Frame.addFromList(drawlist, canvas)

consumes Flowables from the front of drawlist until the frame is full. If it cannot fit one object,
raises an exception.

 Frame.split(flowable,canv)

Asks the flowable to split using up the available space and return the list of flowables.

 Frame.drawBoundary(canvas)

draws the frame boundary as a rectangle (primarily for debugging).

Using Frames

Frames can be used directly with canvases and flowables to create documents. The
Frame.addFromList method handles the wrap & drawOn calls for you. You don't need all of the
Platypus machinery to get something useful into PDF.

from reportlab.pdfgen.canvas import Canvas
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.units import inch
from reportlab.platypus import Paragraph, Frame
styles = getSampleStyleSheet()
styleN = styles['Normal']
styleH = styles['Heading1']
story = []

#add some flowables
story.append(Paragraph("This is a Heading",styleH))
story.append(Paragraph("This is a paragraph in <i>Normal</i> style.",
 styleN))
c = Canvas('mydoc.pdf')
f = Frame(inch, inch, 6*inch, 9*inch, showBoundary=1)
f.addFromList(story,c)
c.save()

User Guide Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts

Page 58

5.6 Documents and Templates
The BaseDocTemplate class implements the basic machinery for document formatting. An instance of
the class contains a list of one or more PageTemplates that can be used to describe the layout of
information on a single page. The build method can be used to process a list of Flowables to produce
a PDF document.

The BaseDocTemplate class

 BaseDocTemplate(self, filename,
 pagesize=defaultPageSize,
 pageTemplates=[],
 showBoundary=0,
 leftMargin=inch,
 rightMargin=inch,
 topMargin=inch,
 bottomMargin=inch,
 allowSplitting=1,
 title=None,
 author=None,
 _pageBreakQuick=1)

creates a document template suitable for creating a basic document. It comes with quite a lot of internal
machinery, but no default page templates. The required filename can be a string, the name of a file to
receive the created PDF document; alternatively it can be an object which has a write method such as a
StringIO or file or socket.

The allowed arguments should be self explanatory, but showBoundary controls whether or not Frame
boundaries are drawn which can be useful for debugging purposes. The allowSplitting argument
determines whether the builtin methods should try to split individual Flowables across Frames. The
_pageBreakQuick argument determines whether an attempt to do a page break should try to end all the
frames on the page or not, before ending the page.

User BaseDocTemplate Methods

These are of direct interest to client programmers in that they are normally expected to be used.

 BaseDocTemplate.addPageTemplates(self,pageTemplates)

This method is used to add one or a list of PageTemplates to an existing documents.

 BaseDocTemplate.build(self, flowables, filename=None, canvasmaker=canvas.Canvas)

This is the main method which is of interest to the application programmer. Assuming that the document
instance is correctly set up the build method takes the story in the shape of the list of flowables (the
flowables argument) and loops through the list forcing the flowables one at a time through the formatting
machinery. Effectively this causes the BaseDocTemplate instance to issue calls to the instance
handle_XXX methods to process the various events.

User Virtual BaseDocTemplate Methods

These have no semantics at all in the base class. They are intended as pure virtual hooks into the layout
machinery. Creators of immediately derived classes can override these without worrying about affecting the
properties of the layout engine.

 BaseDocTemplate.afterInit(self)

This is called after initialisation of the base class; a derived class could overide the method to add default
PageTemplates.

 BaseDocTemplate.afterPage(self)

This is called after page processing, and immediately after the afterDrawPage method of the current page
template. A derived class could use this to do things which are dependent on information in the page such as

User Guide Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts

Page 59

the first and last word on the page of a dictionary.

 BaseDocTemplate.beforeDocument(self)

This is called before any processing is done on the document, but after the processing machinery is ready. It
can therefore be used to do things to the instance's pdfgen.canvas and the like.

 BaseDocTemplate.beforePage(self)

This is called at the beginning of page processing, and immediately before the beforeDrawPage method of
the current page template. It could be used to reset page specific information holders.

 BaseDocTemplate.filterFlowables(self,flowables)

This is called to filter flowables at the start of the main handle_flowable method. Upon return if flowables[0]
has been set to None it is discarded and the main method returns immediately.

 BaseDocTemplate.afterFlowable(self, flowable)

Called after a flowable has been rendered. An interested class could use this hook to gather information about
what information is present on a particular page or frame.

BaseDocTemplate Event handler Methods

These methods constitute the greater part of the layout engine. Programmers shouldn't have to call or
override these methods directly unless they are trying to modify the layout engine. Of course, the
experienced programmer who wants to intervene at a particular event, XXX, which does not correspond to
one of the virtual methods can always override and call the base method from the drived class version. We
make this easy by providing a base class synonym for each of the handler methods with the same name
prefixed by an underscore '_'.

 def handle_pageBegin(self):
 doStuff()
 BaseDocTemplate.handle_pageBegin(self)
 doMoreStuff()

 #using the synonym
 def handle_pageEnd(self):
 doStuff()
 self._handle_pageEnd()
 doMoreStuff()

Here we list the methods only as an indication of the events that are being handled. Interested programmers
can take a look at the source.

 handle_currentFrame(self,fx)
 handle_documentBegin(self)
 handle_flowable(self,flowables)
 handle_frameBegin(self,*args)
 handle_frameEnd(self)
 handle_nextFrame(self,fx)
 handle_nextPageTemplate(self,pt)
 handle_pageBegin(self)
 handle_pageBreak(self)
 handle_pageEnd(self)

Using document templates can be very easy; SimpleDoctemplate is a class derived from
BaseDocTemplate which provides its own PageTemplate and Frame setup.

from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.pagesizes import letter
from reportlab.platypus import Paragraph, SimpleDocTemplate
styles = getSampleStyleSheet()
styleN = styles['Normal']
styleH = styles['Heading1']
story = []

#add some flowables
story.append(Paragraph("This is a Heading",styleH))

User Guide Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts

Page 60

story.append(Paragraph("This is a paragraph in <i>Normal</i> style.",
 styleN))
doc = SimpleDocTemplate('mydoc.pdf',pagesize = letter)
doc.build(story)

PageTemplates

The PageTemplate class is a container class with fairly minimal semantics. Each instance contains a list
of Frames and has methods which should be called at the start and end of each page.

PageTemplate(id=None,frames=[],onPage=_doNothing,onPageEnd=_doNothing)

is used to initialize an instance, the frames argument should be a list of Frames whilst the optional
onPage and onPageEnd arguments are callables which should have signature def
XXX(canvas,document) where canvas and document are the canvas and document being drawn.
These routines are intended to be used to paint non-flowing (i.e. standard) parts of pages. These attribute
functions are exactly parallel to the pure virtual methods PageTemplate.beforPage and
PageTemplate.afterPage which have signature beforPage(self,canvas,document). The
methods allow class derivation to be used to define standard behaviour, whilst the attributes allow instance
changes. The id argument is used at run time to perform PageTemplate switching so
id='FirstPage' or id='TwoColumns' are typical.

User Guide Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts

Page 61

Chapter 6 Paragraphs
The reportlab.platypus.Paragraph class is one of the most useful of the Platypus Flowables;
it can format fairly arbitrary text and provides for inline font style and colour changes using an XML style
markup. The overall shape of the formatted text can be justified, right or left ragged or centered. The XML
markup can even be used to insert greek characters or to do subscripts.

The following text creates an instance of the Paragraph class:

Paragraph(text, style, bulletText=None)

The text argument contains the text of the paragraph; excess white space is removed from the text at the
ends and internally after linefeeds. This allows easy use of indented triple quoted text in Python scripts. The
bulletText argument provides the text of a default bullet for the paragraph. The font and other properties
for the paragraph text and bullet are set using the style argument.

The style argument should be an instance of class ParagraphStyle obtained typically using

from reportlab.lib.styles import ParagraphStyle

this container class provides for the setting of multiple default paragraph attributes in a structured way. The
styles are arranged in a dictionary style object called a stylesheet which allows for the styles to be
accessed as stylesheet['BodyText']. A sample style sheet is provided.

from reportlab.lib.styles import getSampleStyleSheet
stylesheet=getSampleStyleSheet()
normalStyle = stylesheet['Normal']

The options which can be set for a Paragraph can be seen from the ParagraphStyle defaults.

class ParagraphStyle

class ParagraphStyle(PropertySet):
 defaults = {
 'fontName':'Times-Roman',
 'fontSize':10,
 'leading':12,
 'leftIndent':0,
 'rightIndent':0,
 'firstLineIndent':0,
 'alignment':TA_LEFT,
 'spaceBefore':0,
 'spaceAfter':0,
 'bulletFontName':'Times-Roman',
 'bulletFontSize':10,
 'bulletIndent':0,
 'textColor': black
 }

6.1 Using Paragraph Styles
The Paragraph and ParagraphStyle classes together handle most common formatting needs. The
following examples draw paragraphs in various styles, and add a bounding box so that you can see exactly
what space is taken up.

User Guide Chapter 6 Paragraphs

Page 62

Figure A-40: The default ParagraphStyle

You are hereby charged that on the 28th
day of May, 1970, you did willfully,
unlawfully, and with malice of forethought,
publish an alleged English-Hungarian
phrase book with intent to cause a breach
of the peace. How do you plead?

spaceBefore = 0
fontName = Times-Roman
bulletFontName = Times-Roman
firstLineIndent = 0
leftIndent = 0
rightIndent = 0
wordWrap = None
backColor = None
alignment = 0
leading = 12
bulletIndent = 0
bulletFontSize = 10
fontSize = 10
textColor = Color(0,0,0)
spaceAfter = 0

The two attributes spaceBefore and spaceAfter do what they say, except at the top or bottom of a
frame. At the top of a frame, spaceBefore is ignored, and at the bottom, spaceAfter is ignored. This
means that you could specify that a 'Heading2' style had two inches of space before when it occurs in
mid-page, but will not get acres of whitespace at the top of a page. These two attributes should be thought of
as 'requests' to the Frame and are not part of the space occupied by the Paragraph itself.

The fontSize and fontName tags are obvious, but it is important to set the leading. This is the
spacing between adjacent lines of text; a good rule of thumb is to make this 20% larger than the point size.
To get double-spaced text, use a high leading.

The figure below shows space before and after and an increased leading:

Figure A-41: Space before and after and increased leading

You are hereby charged that on the 28th

day of May, 1970, you did willfully,

unlawfully, and with malice of forethought,

publish an alleged English-Hungarian

phrase book with intent to cause a breach

of the peace. How do you plead?

spaceBefore = 6
fontName = Times-Roman
bulletFontName = Times-Roman
firstLineIndent = 0
leftIndent = 0
rightIndent = 0
wordWrap = None
backColor = None
alignment = 0
leading = 16
bulletIndent = 0
bulletFontSize = 10
fontSize = 10
textColor = Color(0,0,0)
spaceAfter = 6

The leftIndent and rightIndent attributes do exactly what you would expect;
firstLineIndent is added to the leftIndent of the first line. If you want a straight left edge,
remember to set firstLineIndent equal to 0.

User Guide Chapter 6 Paragraphs

Page 63

Figure A-42: one third inch indents at left and right, two thirds on first line

You are hereby charged
that on the 28th day of May,
1970, you did willfully,
unlawfully, and with malice of
forethought, publish an alleged
English-Hungarian phrase book
with intent to cause a breach of
the peace. How do you plead?

spaceBefore = 0
fontName = Times-Roman
bulletFontName = Times-Roman
firstLineIndent = 24
leftIndent = 24
rightIndent = 24
wordWrap = None
backColor = None
alignment = 0
leading = 12
bulletIndent = 0
bulletFontSize = 10
fontSize = 10
textColor = Color(0,0,0)
spaceAfter = 0

Setting firstLineIndent equal to a negative number, leftIndent much higher, and using a
different font (we'll show you how later!) can give you a definition list:.

Figure A-43: Definition Lists

Judge Pickles: You are hereby
charged that on the 28th day of
May, 1970, you did willfully,
unlawfully, and with malice of
forethought, publish an alleged
English-Hungarian phrase book
with intent to cause a breach of the
peace. How do you plead?

spaceBefore = 0
fontName = Times-Roman
bulletFontName = Times-Roman
firstLineIndent = 0
leftIndent = 36
rightIndent = 0
wordWrap = None
backColor = None
alignment = 0
leading = 12
bulletIndent = 0
bulletFontSize = 10
fontSize = 10
textColor = Color(0,0,0)
spaceAfter = 0

There are four possible values of alignment, defined as constants in the module reportlab.lib.enums.
These are TA_LEFT, TA_CENTER or TA_CENTRE, TA_RIGHT and TA_JUSTIFY, with values of 0, 1, 2
and 4 respectively. These do exactly what you would expect.

6.2 Paragraph XML Markup Tags
XML markup can be used to modify or specify the overall paragraph style, and also to specify intra-
paragraph markup.

The outermost < para > tag

The paragraph text may optionally be surrounded by <para attributes....> </para> tags. The attributes if any
of the opening <para> tag affect the style that is used with the Paragraph text and/or bulletText.

Attribute Synonyms

alignment alignment, align

backColor backColor, bgcolor, backcolor, bg

bulletColor bulletColor, bcolor, bulletcolor

bulletFontName bulletFontName, bulletfontname, bfont

bulletFontSize bulletfontsize, bulletFontSize, bfontsize

bulletIndent bindent, bulletindent, bulletIndent

firstLineIndent findent, firstlineindent, firstLineIndent

User Guide Chapter 6 Paragraphs

Page 64

fontName fontName, font, fontname, face

fontSize fontSize, size, fontsize

leading leading

leftIndent leftindent, leftIndent, lindent

rightIndent rightIndent, rightindent, rindent

spaceAfter spacea, spaceafter, spaceAfter

spaceBefore spaceb, spacebefore, spaceBefore

textColor color, textcolor, fg, textColor

Table 6-2 - Synonyms for style attributes

Some useful synonyms have been provided for our Python attribute names, including lowercase versions, and
the equivalent properties from the HTML standard where they exist. These additions make it much easier to
build XML-printing applications, since much intra-paragraph markup may not need translating. The table
below shows the allowed attributes and synonyms in the outermost paragraph tag.

6.3 Intra-paragraph markup
'Within each paragraph, we use a basic set of XML tags to provide markup. The most basic of these are bold
(...) and italic (<i>...</i>). It is also legal to use an underline tag (<u>...</u> but it has no effect;
PostScript fonts don't support underlining, and neither do we, yet.

Figure A-44: Simple bold and italic tags

You are hereby charged
that on the 28th day of May,
1970, you did willfully,
unlawfully, and <i>with malice
of forethought</i>, publish an
alleged English-Hungarian phrase
book with intent to cause a
breach of the peace. <u>How do
you plead</u>?

You are hereby charged that on the
28th day of May, 1970, you did
willfully, unlawfully, and with malice
of forethought, publish an alleged
English-Hungarian phrase book with
intent to cause a breach of the peace.
How do you plead?

The tag

The tag can be used to change the font name, size and text color for any substring within the
paragraph. Legal attributes are size, face, name (which is the same as face), color, and fg (which
is the same as color). The name is the font family name, without any 'bold' or 'italic' suffixes. Colors may
be HTML color names or a hex string encoded in a variety of ways; see reportlab.lib.colors for
the formats allowed.

Figure A-45: The font tag

You are hereby charged
that on the 28th day of May,
1970, you did willfully,
unlawfully, and with malice of
forethought, publish an
alleged English-Hungarian phrase
book with intent to cause a
breach of the peace. How do you
plead?

 You are hereby charged that on the
28th day of May, 1970, you did
willfully, unlawfully, and with
malice of forethought, publish
an alleged English-Hungarian phrase
book with intent to cause a breach of
the peace. How do you plead?

User Guide Chapter 6 Paragraphs

Page 65

Superscripts and Subscripts

Superscripts and subscripts are supported with the <super> and <sub> tags, which work exactly as you might
expect. In addition, most greek letters can be accessed by using the <greek></greek> tag, or with mathML
entity names.

Figure A-46: Greek letters and superscripts

Equation (α):
<greek>e</greek>
<super><greek>ip</greek></super>
= -1

Equation (α): ε ιπ = -1

Numbering Paragraphs and Lists

The <seq> tag provides comprehensive support for numbering lists, chapter headings and so on. It acts as
an interface to the Sequencer class in reportlab.lib.sequencer. These are used to number
headings and figures throughout this document. You may create as many separate 'counters' as you wish,
accessed with the id attribute; these will be incremented by one each time they are accessed. The
seqreset tag resets a counter. If you want it to resume from a number other than 1, use the syntax
<seqreset id="mycounter" base="42">. Let's have a go:

Figure A-47: Basic sequences

<seq id="spam"/>, <seq
id="spam"/>, <seq id="spam"/>.
Reset<seqreset id="spam"/>. <seq
id="spam"/>, <seq id="spam"/>,
<seq id="spam"/>.

1, 2, 3. Reset. 1, 2, 3.

You can save specifying an ID by designating a counter ID as the default using the <seqdefault
id="Counter"> tag; it will then be used whenever a counter ID is not specified. This saves some typing,
especially when doing multi-level lists; you just change counter ID when stepping in or out a level.

Figure A-48: The default sequence

<seqdefault
id="spam"/>Continued... <seq/>,
<seq/>, <seq/>, <seq/>, <seq/>,
<seq/>, <seq/>.

Continued... 4, 5, 6, 7, 8, 9, 10.

Finally, one can access multi-level sequences using a variation of Python string formatting and the
template attribute in a <seq> tags. This is used to do the captions in all of the figures, as well as the level
two headings. The substring %(counter)s extracts the current value of a counter without incrementing it;
appending a plus sign as in %(counter)s increments the counter. The figure captions use a pattern like
the one below:

Figure A-49: Multi-level templates

Figure <seq
template="%(Chapter)s-%(FigureNo+)s"/>
- Multi-level templates

Figure 6-1 - Multi-level templates

We cheated a little - the real document used 'Figure', but the text above uses 'FigureNo' - otherwise we would
have messed up our numbering!

6.4 Bullets and Paragraph Numbering
In addition to the three indent properties, some other parameters are needed to correctly handle bulleted and
numbered lists. We discuss this here because you have now seen how to handle numbering. A paragraph may
have an optional bulletText argument passed to its constructor; alternatively, bullet text may be placed

User Guide Chapter 6 Paragraphs

Page 66

in a <bullet>..</bullet> tag at its head. The text will be drawn on the first line of the paragraph,
with its x origin determined by the bulletIndent attribute of the style, and in the font given in the
bulletFontName attribute. For genuine bullets, a good idea is to select the Times-Roman font in the
style, and use a character such as \xe2\x80\xa2):

Attribute Synonyms

bulletColor bulletcolor, bulletColor, color, fg

bulletFontName face, bulletfontname, bulletFontName, font

bulletFontSize bulletfontsize, bulletFontSize, fontsize, size

bulletIndent indent, bulletIndent, bulletindent

Table 6-3 - <bullet> attributes & synonyms

The <bullet> tag is only allowed once in a given paragraph and its use overrides the implied bullet style and
bulletText specified in the Paragraph creation.

Figure A-50: Basic use of bullet points

• this is a bullet point. Spam
spam spam spam spam spam
spam spam spam spam spam
spam spam spam spam spam
spam spam spam spam spam
spam

spaceBefore = 0
fontName = Times-Roman
bulletFontName = Symbol
firstLineIndent = 0
leftIndent = 54
rightIndent = 0
wordWrap = None
backColor = None
alignment = 0
leading = 12
bulletIndent = 18
bulletFontSize = 10
fontSize = 10
textColor = Color(0,0,0)
spaceAfter = 0

Exactly the same technique is used for numbers, except that a sequence tag is used. It is also possible to put a
multi-character string in the bullet; with a deep indent and bold bullet font, you can make a compact
definition list.

User Guide Chapter 6 Paragraphs

Page 67

Chapter 7 Tables and TableStyles
The Table and LongTable classes derive from the Flowable class and are intended as a simple
textual gridding mechanisms. The longTable class uses a greedy algorithm when calculating column
widths and is intended for long tables where speed counts. Table cells can hold anything which can be
converted to a Python string or Flowables (or lists of Flowables).

Our present tables are a trade-off between efficient drawing and specification and functionality. We assume
the reader has some familiarity with HTML tables. In brief, they have the following characteristics:

• They can contain anything convertible to a string; flowable objects such as other tables; or
entire sub-stories

• They can work out the row heights to fit the data if you don't supply the row height. (They can
also work out the widths, but generally it is better for a designer to set the width manually, and
it draws faster).

• They can split across pages if needed (see the canSplit attribute). You can specify that a number
of rows at the top and bottom should be repeated after the split (e.g. show the headers again on
page 2,3,4...)

• For very wide tables, they can also split 'by column'. You can choose whether tou want to split
down-and-across or across-and-down

• They have a simple and powerful notation for specifying shading and gridlines which works
well with financial or database tables, where you don't know the number of rows up front. You
can easily say 'make the last row bold and put a line above it'

• The style and data are separated, so you can declare a handful of table styles and use them for a
family of reports. Styes can also 'inherit', as with paragraphs.

There is however one main limitation compared to an HTML table. They define a simple rectangular grid.
There is no simple row or column spanning; if you need to span cells, you must nest tables inside table cells
instead or use a more complex scheme in which the lead cell of a span contains the actual contents.

Tables are created by passing the constructor an optional sequence of column widths, an optional sequence
of row heights, and the data in row order. Drawing of the table can be controlled by using a TableStyle
instance. This allows control of the color and weight of the lines (if any), and the font, alignment and padding
of the text. A primitive automatic row height and or column width calculation mechanism is provided for.

7.1 Table User Methods
These are the main methods which are of interest to the client programmer.

Table(data, colWidths=None, rowHeights=None, style=None, splitByRow=1,
repeatRows=0, repeatCols=0)

The data argument is a sequence of sequences of cell values each of which should be convertible to a
string value using the str function or should be a Flowable instance (such as a Paragraph) or a list (or
tuple) of such instances. If a cell value is a Flowable or list of Flowables these must either have a
determined width or the containing column must have a fixed width. The first row of cell values is in
data[0] i.e. the values are in row order. The i, jth. cell value is in data[i][j]. Newline characters
'\n' in cell values are treated as line split characters and are used at draw time to format the cell into lines.

The other arguments are fairly obvious, the colWidths argument is a sequence of numbers or possibly
None, representing the widths of the columns. The number of elements in colWidths determines the
number of columns in the table. A value of None means that the corresponding column width should be
calculated automatically.

The rowHeights argument is a sequence of numbers or possibly None, representing the heights of the
rows. The number of elements in rowHeights determines the number of rows in the table. A value of
None means that the corresponding row height should be calculated automatically.

The style argument can be an initial style for the table.

The splitByRow argument is only needed for tables both too tall and too wide to fit in the current context.
In this case you must decide whether to 'tile' down and across, or across and then down. This parameter is a

User Guide Chapter 7 Tables and TableStyles

Page 68

Boolean indicating that the Table should split itself by row before attempting to split itself by column
when too little space is available in the current drawing area and the caller wants the Table to split.

The repeatRows and repeatCols arguments specify the number of leading rows and columns that
should be repeated when the Table is asked to split itself.

Table.setStyle(tblStyle)

This method applies a particular instance of class TableStyle (discussed below) to the Table instance.
This is the only way to get tables to appear in a nicely formatted way.

Successive uses of the setStyle method apply the styles in an additive fashion. That is, later applications
override earlier ones where they overlap.

7.2 TableStyle
This class is created by passing it a sequence of commands, each command is a tuple identified by its first
element which is a string; the remaining elements of the command tuple represent the start and stop cell
coordinates of the command and possibly thickness and colors, etc.

7.3 TableStyle User Methods

TableStyle(commandSequence)

The creation method initializes the TableStyle with the argument command sequence as an example:

 LIST_STYLE = TableStyle(
 [('LINEABOVE', (0,0), (-1,0), 2, colors.green),
 ('LINEABOVE', (0,1), (-1,-1), 0.25, colors.black),
 ('LINEBELOW', (0,-1), (-1,-1), 2, colors.green),
 ('ALIGN', (1,1), (-1,-1), 'RIGHT')]
)

TableStyle.add(commandSequence)

This method allows you to add commands to an existing TableStyle, i.e. you can build up
TableStyles in multiple statements.

 LIST_STYLE.add('BACKGROUND', (0,0), (-1,0), colors.Color(0,0.7,0.7))

TableStyle.getCommands()

This method returns the sequence of commands of the instance.

 cmds = LIST_STYLE.getCommands()

7.4 TableStyle Commands
The commands passed to TableStyles come in three main groups which affect the table background,
draw lines, or set cell styles.

The first element of each command is its identifier, the second and third arguments determine the cell
coordinates of the box of cells which are affected with negative coordinates counting backwards from the
limit values as in Python indexing. The coordinates are given as (column, row) which follows the
spreadsheet 'A1' model, but not the more natural (for mathematicians) 'RC' ordering. The top left cell is (0, 0)
the bottom right is (-1, -1). Depending on the command various extra (???) occur at indices beginning at 3
on.

User Guide Chapter 7 Tables and TableStyles

Page 69

TableStyle Cell Formatting Commands

The cell formatting commands all begin with an identifier, followed by the start and stop cell definitions and
the perhaps other arguments. the cell formatting commands are:

FONT - takes fontname, optional fontsize and optional leading.
FONTNAME (or FACE) - takes fontname.
FONTSIZE (or SIZE) - takes fontsize in points; leading may get out of sync.
LEADING - takes leading in points.
TEXTCOLOR - takes a color name or (R,G,B) tuple.
ALIGNMENT (or ALIGN) - takes one of LEFT, RIGHT and CENTRE (or CENTER) or DECIMAL.
LEFTPADDING - takes an integer, defaults to 6.
RIGHTPADDING - takes an integer, defaults to 6.
BOTTOMPADDING - takes an integer, defaults to 3.
TOPPADDING - takes an integer, defaults to 3.
BACKGROUND - takes a color.
ROWBACKGROUNDS - takes a list of colors to be used cyclically.
COLBACKGROUNDS - takes a list of colors to be used cyclically.
VALIGN - takes one of TOP, MIDDLE or the default BOTTOM

This sets the background cell color in the relevant cells. The following example shows the BACKGROUND,
and TEXTCOLOR commands in action:

data= [['00', '01', '02', '03', '04'],
 ['10', '11', '12', '13', '14'],
 ['20', '21', '22', '23', '24'],
 ['30', '31', '32', '33', '34']]
t=Table(data)
t.setStyle(TableStyle([('BACKGROUND',(1,1),(-2,-2),colors.green),
 ('TEXTCOLOR',(0,0),(1,-1),colors.red)]))

produces

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

To see the effects of the alignment styles we need some widths and a grid, but it should be easy to see where
the styles come from.

data= [['00', '01', '02', '03', '04'],
 ['10', '11', '12', '13', '14'],
 ['20', '21', '22', '23', '24'],
 ['30', '31', '32', '33', '34']]
t=Table(data,5*[0.4*inch], 4*[0.4*inch])
t.setStyle(TableStyle([('ALIGN',(1,1),(-2,-2),'RIGHT'),
 ('TEXTCOLOR',(1,1),(-2,-2),colors.red),
 ('VALIGN',(0,0),(0,-1),'TOP'),
 ('TEXTCOLOR',(0,0),(0,-1),colors.blue),
 ('ALIGN',(0,-1),(-1,-1),'CENTER'),
 ('VALIGN',(0,-1),(-1,-1),'MIDDLE'),
 ('TEXTCOLOR',(0,-1),(-1,-1),colors.green),
 ('INNERGRID', (0,0), (-1,-1), 0.25, colors.black),
 ('BOX', (0,0), (-1,-1), 0.25, colors.black),
]))

produces

00
01 02 03 04

10
11 12 13 14

20
21 22 23 24

30 31 32 33 34

User Guide Chapter 7 Tables and TableStyles

Page 70

TableStyle Line Commands

Line commands begin with the identifier, the start and stop cell coordinates and always follow this with the
thickness (in points) and color of the desired lines. Colors can be names, or they can be specified as a (R, G,
B) tuple, where R, G and B are floats and (0, 0, 0) is black. The line command names are: GRID, BOX,
OUTLINE, INNERGRID, LINEBELOW, LINEABOVE, LINEBEFORE and LINEAFTER. BOX and
OUTLINE are equivalent, and GRID is the equivalent of applying both BOX and INNERGRID.

We can see some line commands in action with the following example.

data= [['00', '01', '02', '03', '04'],
 ['10', '11', '12', '13', '14'],
 ['20', '21', '22', '23', '24'],
 ['30', '31', '32', '33', '34']]
t=Table(data,style=[('GRID',(1,1),(-2,-2),1,colors.green),
 ('BOX',(0,0),(1,-1),2,colors.red),
 ('LINEABOVE',(1,2),(-2,2),1,colors.blue),
 ('LINEBEFORE',(2,1),(2,-2),1,colors.pink),
])

produces

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

Line commands cause problems for tables when they split; the following example shows a table being split in
various positions

data= [['00', '01', '02', '03', '04'],
 ['10', '11', '12', '13', '14'],
 ['20', '21', '22', '23', '24'],
 ['30', '31', '32', '33', '34']]
t=Table(data,style=[
 ('GRID',(0,0),(-1,-1),0.5,colors.grey),
 ('GRID',(1,1),(-2,-2),1,colors.green),
 ('BOX',(0,0),(1,-1),2,colors.red),
 ('BOX',(0,0),(-1,-1),2,colors.black),
 ('LINEABOVE',(1,2),(-2,2),1,colors.blue),
 ('LINEBEFORE',(2,1),(2,-2),1,colors.pink),
 ('BACKGROUND', (0, 0), (0, 1), colors.pink),
 ('BACKGROUND', (1, 1), (1, 2), colors.lavender),
 ('BACKGROUND', (2, 2), (2, 3), colors.orange),
])

produces

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

00 01 02 03 04

10 11 12 13 14

User Guide Chapter 7 Tables and TableStyles

Page 71

20 21 22 23 24

30 31 32 33 34

When unsplit and split at the first or second row.

Complex Cell Values

As mentioned above we can have complicated cell values including Paragraphs, Images and other
Flowables or lists of the same. To see this in operation consider the following code and the table it
produces. Note that the Image has a white background which will obscure any background you choose for
the cell. To get better results you should use a transparent background.

I = Image('../images/replogo.gif')
I.drawHeight = 1.25*inch*I.drawHeight / I.drawWidth
I.drawWidth = 1.25*inch
P0 = Paragraph('''
 A para<i>graph</i>
 <super>1</super>''',
 styleSheet["BodyText"])
P = Paragraph('''
 <para align=center spaceb=3>The ReportLab Left
 Logo
 Image</para>''',
 styleSheet["BodyText"])
data= [['A', 'B', 'C', P0, 'D'],
 ['00', '01', '02', [I,P], '04'],
 ['10', '11', '12', [P,I], '14'],
 ['20', '21', '22', '23', '24'],
 ['30', '31', '32', '33', '34']]

t=Table(data,style=[('GRID',(1,1),(-2,-2),1,colors.green),
 ('BOX',(0,0),(1,-1),2,colors.red),
 ('LINEABOVE',(1,2),(-2,2),1,colors.blue),
 ('LINEBEFORE',(2,1),(2,-2),1,colors.pink),
 ('BACKGROUND', (0, 0), (0, 1), colors.pink),
 ('BACKGROUND', (1, 1), (1, 2), colors.lavender),
 ('BACKGROUND', (2, 2), (2, 3), colors.orange),
 ('BOX',(0,0),(-1,-1),2,colors.black),
 ('GRID',(0,0),(-1,-1),0.5,colors.black),
 ('VALIGN',(3,0),(3,0),'BOTTOM'),
 ('BACKGROUND',(3,0),(3,0),colors.limegreen),
 ('BACKGROUND',(3,1),(3,1),colors.khaki),
 ('ALIGN',(3,1),(3,1),'CENTER'),
 ('BACKGROUND',(3,2),(3,2),colors.beige),
 ('ALIGN',(3,2),(3,2),'LEFT'),
])

t._argW[3]=1.5*inch

produces

A B C A paragraph 1 D

00 01 02
The ReportLab Left

Logo Image 04

10 11 12

The ReportLab Left
Logo Image

14

User Guide Chapter 7 Tables and TableStyles

Page 72

20 21 22 23 24

30 31 32 33 34

TableStyle Span Commands

Our Table classes support the concept of spanning, but it isn't specified in the same way as html. The style
specification

SPAN, (sc,sr), (ec,er)

indicates that the cells in columns sc - ec and rows sr - er should be combined into a super cell with
contents determined by the cell (sc, sr). The other cells should be present, but should contain empty
strings or you may get unexpected results.

data= [['Top\nLeft', '', '02', '03', '04'],
 ['', '', '12', '13', '14'],
 ['20', '21', '22', 'Bottom\nRight', ''],
 ['30', '31', '32', '', '']]
t=Table(data,style=[
 ('GRID',(0,0),(-1,-1),0.5,colors.grey),
 ('BACKGROUND',(0,0),(1,1),colors.palegreen),
 ('SPAN',(0,0),(1,1)),
 ('BACKGROUND',(-2,-2),(-1,-1), colors.pink),
 ('SPAN',(-2,-2),(-1,-1)),
])

produces

Top
Left

02 03 04

12 13 14

20 21 22
Bottom
Right30 31 32

notice that we don't need to be conservative with our GRID command. The spanned cells are not drawn
through.

Special TableStyle Indeces

In any style command the first row index may be set to one of the special strings 'splitlast' or
'splitfirst' to indicate that the style should be used only for the last row of a split table, or the first
row of a continuation. This allows splitting tables with nicer effects around the split.

User Guide Chapter 7 Tables and TableStyles

Page 73

Chapter 8 Other Useful Flowables

8.1 Preformatted(text, style, bulletText = None,
dedent=0)

Creates a preformatted paragraph which does no wrapping, line splitting or other manipulations. No XML
style tags are taken account of in the text. If dedent is non zero dedent common leading spaces will be
removed from the front of each line.

8.2 XPreformatted(text, style, bulletText = None,
dedent=0, frags=None)

This is a non rearranging form of the Paragraph class; XML tags are allowed in text and have the
same meanings as for the Paragraph class. As for Preformatted, if dedent is non zero dedent
common leading spaces will be removed from the front of each line.

from reportlab.lib.styles import getSampleStyleSheet
stylesheet=getSampleStyleSheet()
normalStyle = stylesheet['Normal']
text='''

 This is a non rearranging form of the Paragraph class;
 XML tags are allowed in <i>text</i> and have the same

 meanings as for the Paragraph class.
 As for Preformatted, if dedent is non zero dedent
 common leading spaces will be removed from the
 front of each line.
 You can have &amp; style entities as well for & < > and ".

'''
t=XPreformatted(text,normalStyle,dedent=3)

produces
This is a non rearranging form of the Paragraph class;
XML tags are allowed in text and have the same

 meanings as for the Paragraph class.
As for Preformatted, if dedent is non zero dedent
 common leading spaces will be removed from the
front of each line.
You can have & style entities as well for & < > and ".

8.3 Image(filename, width=None, height=None)
Create a flowable which will contain the image defined by the data in file filename. The default PDF
image type jpeg is supported and if the PIL extension to Python is installed the other image types can also
be handled. If width and or height are specified then they determine the dimension of the displayed
image in points. If either dimension is not specified (or specified as None) then the corresponding pixel
dimension of the image is assumed to be in points and used.

Image("lj8100.jpg")

will display as

User Guide Chapter 8 Other Useful Flowables

Page 74

whereas

im = Image("lj8100.jpg", width=2*inch, height=2*inch)
im.hAlign = 'CENTER'

produces

8.4 Spacer(width, height)
This does exactly as would be expected; it adds a certain amount of space into the story. At present this only
works for vertical space.

8.5 PageBreak()
This Flowable represents a page break. It works by effectively consuming all vertical space given to it.
This is sufficient for a single Frame document, but would only be a frame break for multiple frames so the
BaseDocTemplate mechanism detects pageBreaks internally and handles them specially.

8.6 CondPageBreak(height)
This Flowable attempts to force a Frame break if insufficient vertical space remains in the current
Frame. It is thus probably wrongly named and should probably be renamed as CondFrameBreak.

8.7 KeepTogether(flowables)
This compound Flowable takes a list of Flowables and attempts to keep them in the same Frame. If
the total height of the Flowables in the list flowables exceeds the current frame's available space
then all the space is used and a frame break is forced.

User Guide Chapter 8 Other Useful Flowables

Page 75

Chapter 9 Writing your own Flowable Objects
Flowables are intended to be an open standard for creating reusable report content, and you can easily create
your own objects. We hope that over time we will build up a library of contributions, giving reportlab users a
rich selection of charts, graphics and other "report widgets" they can use in their own reports. This section
shows you how to create your own flowables.
we should put the Figure class in the standard library, as it is a very useful base.

9.1 A very simple Flowable
Recall the hand function from the pdfgen section of this user guide which generated a drawing of a hand
as a closed figure composed from Bezier curves.

Figure A-51: a hand

To embed this or any other drawing in a Platypus flowable we must define a subclass of Flowable with at
least a wrap method and a draw method.

from reportlab.platypus.flowables import Flowable
from reportlab.lib.colors import tan, green
class HandAnnotation(Flowable):
 '''A hand flowable.'''
 def __init__(self, xoffset=0, size=None, fillcolor=tan, strokecolor=green):
 from reportlab.lib.units import inch
 if size is None: size=4*inch
 self.fillcolor, self.strokecolor = fillcolor, strokecolor
 self.xoffset = xoffset
 self.size = size
 # normal size is 4 inches
 self.scale = size/(4.0*inch)
 def wrap(self, *args):
 return (self.xoffset, self.size)
 def draw(self):
 canvas = self.canv
 canvas.setLineWidth(6)
 canvas.setFillColor(self.fillcolor)
 canvas.setStrokeColor(self.strokecolor)
 canvas.translate(self.xoffset+self.size,0)
 canvas.rotate(90)
 canvas.scale(self.scale, self.scale)
 hand(canvas, debug=0, fill=1)

The wrap method must provide the size of the drawing -- it is used by the Platypus mainloop to decide
whether this element fits in the space remaining on the current frame. The draw method performs the
drawing of the object after the Platypus mainloop has translated the (0,0) origin to an appropriate location

User Guide Chapter 9 Writing your own Flowable Objects

Page 76

in an appropriate frame.

Below are some example uses of the HandAnnotation flowable.

The default.

Just one inch high.

One inch high and shifted to the left with blue and cyan.

9.2 Modifying a Built in Flowable
To modify an existing flowable, you should create a derived class and override the methods you need to
change to get the desired behaviour

As an example to create a rotated image you need to override the wrap and draw methods of the existing
Image class

class RotatedImage(Image):
 def wrap(self,availWidth,availHeight):
 h, w = Image.wrap(self,availHeight,availWidth)
 return w, h
 def draw(self):
 self.canv.rotate(90)
 Image.draw(self)

User Guide Chapter 9 Writing your own Flowable Objects

Page 77

I = RotatedImage('../images/replogo.gif')
I.hAlign = 'CENTER'

produces

User Guide Chapter 9 Writing your own Flowable Objects

Page 78

Chapter 10 Future Directions
We have a very long list of things we plan to do and what we do first will most likely be inspired by
customer or user interest.

We plan to provide a large number of pre-designed Platypus example document types -- brochure, newsletter,
business letter, thesis, memo, etcetera, to give our users a better boost towards the solutions they desire.

We plan to fully support adding fonts and internationalization, which are not well supported in the current
release.

We plan to fully support some of the more obscure features of PDF such as general hyperlinks, which are not
yet well supported.

We are also open for suggestions. Please let us know what you think is missing. You can also offer patches
or contributions. Please look to http://www.reportlab.com for the latest mailing list and contact
information.

User Guide Chapter 10 Future Directions

Page 79

Appendix A ReportLab Demos
In the subdirectories of reportlab/demos there are a number of working examples showing almost all
aspects of reportlab in use.

A.1 Odyssey
The three scripts odyssey.py, dodyssey.py and fodyssey.py all take the file odyssey.txt and produce PDF
documents. The included odyssey.txt is short; a longer and more testing version can be found at
ftp://ftp.reportlab.com/odyssey.full.zip.

Windows
cd reportlab\demos\odyssey
python odyssey.py
start odyssey.pdf

Linux
cd reportlab/demos/odyssey
python odyssey.py
acrord odyssey.pdf

Simple formatting is shown by the odyssey.py script. It runs quite fast, but all it does is gather the text and
force it onto the canvas pages. It does no paragraph manipulation at all so you get to see the XML < & > tags.

The scripts fodyssey.py and dodyssey.py handle paragraph formatting so you get to see colour changes etc.
Both scripts use the document template class and the dodyssey.py script shows the ability to do dual column
layout and uses multiple page templates.

A.2 Standard Fonts and Colors
In reportlab/demos/stdfonts the script stdfonts.py can be used to illustrate ReportLab's standard
fonts. Run the script using

cd reportlab\demos\stdfonts
python stdfonts.py

to produce two PDF documents, StandardFonts_MacRoman.pdf & StandardFonts_WinAnsi.pdf which show
the two most common built in font encodings.

The colortest.py script in reportlab/demos/colors demonstrates the different ways in which
reportlab can set up and use colors.

Try running the script and viewing the output document, colortest.pdf. This shows different color spaces and
a large selection of the colors which are named in the reportlab.lib.colors module.

A.3 Py2pdf
Dinu Gherman (<gherman@europemail.com>) contributed this useful script which uses reportlab to produce
nicely colorized PDF documents from Python scripts including bookmarks for classes, methods and
functions. To get a nice version of the main script try

cd reportlab/demos/py2pdf
python py2pdf.py py2pdf.py
acrord py2pdf.pdf

i.e. we used py2pdf to produce a nice version of py2pdf.py in the document with the same rootname and a
.pdf extension.

The py2pdf.py script has many options which are beyond the scope of this simple introduction; consult the
comments at the start of the script.

User Guide Appendix A ReportLab Demos

Page 80

A.4 Gadflypaper
The Python script, gfe.py, in reportlab/demos/gadflypaper uses an inline style of document
preparation. The script almost entirely produced by Aaron Watters produces a document describing Aaron's
gadfly in memory database for Python. To generate the document use

cd reportlab\gadflypaper
python gfe.py
start gfe.pdf

everything in the PDF document was produced by the script which is why this is an inline style of document
production. So, to produce a header followed by some text the script uses functions header and p which
take some text and append to a global story list.

header("Conclusion")

p("""The revamped query engine design in Gadfly 2 supports
..........
and integration.""")

A.5 Pythonpoint
Andy Robinson has refined the pythonpoint.py script (in reportlab\demos\pythonpoint) until it is a
really useful script. It takes an input file containing an XML markup and uses an xmllib style parser to map
the tags into PDF slides. When run in its own directory pythonpoint.py takes as a default input the file
pythonpoint.xml and produces pythonpoint.pdf which is documentation for Pythonpoint! You can also see it
in action with an older paper

cd reportlab\demos\pythonpoint
python pythonpoint.py monterey.xml
start monterey.pdf

Not only is pythonpoint self documenting, but it also demonstrates reportlab and PDF. It uses many features
of reportlab (document templates, tables etc). Exotic features of PDF such as fadeins and bookmarks are also
shown to good effect. The use of an XML document can be contrasted with the inline style of the
gadflypaper demo; the content is completely separate from the formatting

User Guide Appendix A ReportLab Demos

Page 81

	Chapter 1 Introduction
	1.1 About this document
	1.2 What is the ReportLab PDF Library?
	1.3 What is Python?
	1.4 Acknowledgements
	1.5 Installation and Setup
	1.6 Getting Involved
	1.7 Site Configuration
	1.8 Learning More About Python
	1.9 What's New in ReportLab 2.0

	Chapter 2 Graphics and Text with pdfgen
	2.1 Basic Concepts
	2.2 More about the Canvas
	2.3 Drawing Operations
	2.4 The tools: the "draw" operations
	2.5 The toolbox: the "state change" operations
	2.6 Other canvas methods.
	2.7 Coordinates (default user space)
	2.8 Colors
	2.9 Painting back to front
	2.10 Standard fonts and text objects
	2.11 Text object methods
	2.12 Paths and Lines
	2.13 Rectangles, circles, ellipses
	2.14 Bezier curves
	2.15 Path object methods
	2.16 Further Reading: The ReportLab Graphics Library

	Chapter 3 Fonts and encodings
	3.1 Unicode and UTF8 are the default input encodings
	3.2 Changing the built-in fonts output encoding
	3.3 Using non-standard Type 1 fonts
	3.4 Standard Single-Byte Font Encodings
	3.5 TrueType Font Support
	3.6 Asian Font Support
	3.7 RenderPM tests

	Chapter 4 Exposing PDF Special Capabilities
	4.1 Forms
	4.2 Links and Destinations
	4.3 Outline Trees
	4.4 Page Transition Effects
	4.5 Internal File Annotations

	Chapter 5 PLATYPUS - Page Layout and Typography Using Scripts
	5.1 Design Goals
	5.2 Getting started
	5.3 Flowables
	5.4 Guidelines for flowable positioning
	5.5 Frames
	5.6 Documents and Templates

	Chapter 6 Paragraphs
	6.1 Using Paragraph Styles
	6.2 Paragraph XML Markup Tags
	6.3 Intra-paragraph markup
	6.4 Bullets and Paragraph Numbering

	Chapter 7 Tables and TableStyles
	7.1 Table User Methods
	7.2 TableStyle
	7.3 TableStyle User Methods
	7.4 TableStyle Commands

	Chapter 8 Other Useful Flowables
	8.1 Preformatted(text, style, bulletText = None, dedent=0)
	8.2 XPreformatted(text, style, bulletText = None, dedent=0, frags=None)
	8.3 Image(filename, width=None, height=None)
	8.4 Spacer(width, height)
	8.5 PageBreak()
	8.6 CondPageBreak(height)
	8.7 KeepTogether(flowables)

	Chapter 9 Writing your own Flowable Objects
	9.1 A very simple Flowable
	9.2 Modifying a Built in Flowable

	Chapter 10 Future Directions
	Appendix A ReportLab Demos
	A.1 Odyssey
	A.2 Standard Fonts and Colors
	A.3 Py2pdf
	A.4 Gadflypaper
	A.5 Pythonpoint

